Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der Änderungsrate zum Änderungseffekt: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 183: | Zeile 183: | ||
[[Datei:Durchflussrate Aufgabe 1.png|alternativtext=Durchflussrate|mini| | [[Datei:Durchflussrate Aufgabe 1.png|alternativtext=Durchflussrate|mini|width=400%|height=100%|Durchflussrate]] | ||
|2=|3=}} | |2=|3=}} |
Version vom 2. Juni 2020, 11:27 Uhr
Als Einstieg in das Kapitel findest du eine Herleitung des Integrals aus dem Kontext der Differentialrechnung. Dabei werden dir die zwei Oberbegriffe des Kapitels, Änderungsrate und Änderungseffekt, erläutert. Anschließend folgen einige Aufgaben zum Integral. Die Aufgaben werden in drei unterschiedliche Schwierigkeitsstufen eingeteilt, so dass du jederzeit die Möglichkeit hast auf deinem Leistungsstand zu arbeiten.
In Aufgaben, die orange gefärbt sind, kannst du Gelerntes wiederholen und vertiefen.
Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit. Und Aufgaben mit grüner Hinterlegung sind Knobelaufgaben. Aufgaben, die mit einem Stern ⭐ markiert sind, sind speziell für den LK gedacht.Inhaltsverzeichnis
Herleitung des Integrals
Konstante und lineare Funktionen
Wir nehmen an, dass ein Jogger im Durchschnitt 3m/s läuft. Dadurch ergibt sich die konstante Funktion , wie in der unteren Abbildung dargestellt. Nun kann man sich die Frage stellen: Wie viel Meter hat er in einer bestimmten Zeit zurückgelegt? Um das herauszufinden, muss lediglich der Flächeninhalt des Rechtecks zwischen dem Graphen f(x) und der x-Achse in einem festgelegten Zeitintervall berechnet werden. Beispielsweise hätte der Jogger innerhalb der ersten 10s eine Strecke von 30m (
) zurückgelegt. Das lässt sich für beliebig große Intervalle
auf der x-Achse fortführen.
Probiere das in der Darstellung aus indem du die Grenze b verschiebst. Vergleiche den Wert der Stammfunktion F(x) mit dem Wert des Flächeninhalts. Was fällt dir auf?

Ein zu Beginn leerer Wassertank wird durch dieselbe Leitung befüllt und entleert. In Figur 1 ist die momentane Durchflussrate f der Leitung für das Intervall dargestellt.
Es stellt sich die Frage, wie aus der gegebenen Durchflussrate das Gesamtwasservolumen bestimmt werden kann. Das bedeutet: Wie viel Liter Wasser befinden sich nach 9 min im Wassertank?
Im Intervall beträgt der Zufluss
. In diesen 3 Minuten fließen
in den Tank. Im Intervall
beträgt die mittlere Zuflussrate
. In diesen 2 Minuten kommen
dazu. Im Intevall
ist die Durchflussrate negativ. Es fließen
ab. Man kann also die Gesamtänderung des Wasservolumens in einem Intervall
mit Flächeninhalten veranschaulichen, wenn man oberhalb der x-Achse liegende Flächen positiv und unterhalb der x-Achse liegenden Flächen negativ zählt. Dieser orientierte Flächeninhalt beträgt beim Wassertank:
Allgemeine Herleitung und Definition
Bei konstanten oder linearen Funktionen schafft man es den Änderungseffekt durch Rechtecks- und Dreicksflächen zu ermitteln. Doch wie funktioniert das bei Funktionen zweiten Grades oder höher?
Um den Effekt bei Funktionen zweiten Grades oder höher zu ermitteln nutzt man dasselbe Verfahren. Man versucht sich der Fläche zwischen dem Graphen und der x-Achse mit Rechtecksflächen anzunähern. Aktiviere dazu in der unteren Abbildung die Untersumme. Für einen direkten Vergleich kannst du auch das Integral aktivieren.
Hinweise:
- N markiert die Anzahl der Rechtecke unter dem Graphen.
- Das Δx gibt die Breite der Rechtecke an. Je mehr Rechtecke unterhalb des Graphen desto kleiner wird ihre Breite und damit auch das Δx.
- Die eingeblendete Untersumme gibt den aktuellen Flächeninhalt der Summe aller Rechtecksflächen an.

- Je mehr Unterteilungen desto kleiner wird die Breite der Rechtecke.
- Je mehr Unterteilungen der Untersumme desto größer wird der Flächeninhalt der Summe aller Rechtecke.
- Die Summenformel der Untersumme stellt den Flächeninhalt aller Rechtecke dar.
- Je mehr Unterteilungen und je kleiner das Δx desto eher nähert man sich dem Integral. Geht also die Anzahl der Unterteilungen gegen unendlich so bekommt man das Integral für die Funktion über das jeweilige Intervall.
Die Funktion sei auf dem Intervall
stetig (Graph kann nahtlos gezeichnet werden) und
sei eine beliebige Rechtecksumme zu
über dem Intervall
.
Dann heißt der Grenzwert Integral der Funktion
zwischen den Grenzen
und
.
Man schreibt dafür:
(lies: Integral von
von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a}
bis Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b}
).
Die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f} sei stetig (Graph kann nahtlos gezeichnet werden) auf dem Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [a;b]} . Dann gilt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{a}^{b} f(x) dx = F(b) - F(a) } für eine beliebige Stammfunktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} vonStammfunktionen bilden
Eine Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F}
heißt Stammfunktion zu einer Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f}
auf einem Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [a,b]}
, wenn gilt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F'(x) = f(x)}
.
Sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F}
und Stammfunktionen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f}
auf einem Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [a,b]}
, dann gibt es eine Konstante Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c}
, sodass gilt:
Zur Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f}
mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=x^r}
ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F}
mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x)=\frac{1}{r+1} \cdot x^{r+1}}
eine Stammfunktion.
Zur Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f}
mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=x^{-1}=\frac{1}{x}}
ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F}
mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x)=\ln(|x|)}
eine Stammfunktion.
Sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H}
Stammfunktionen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h}
, so gilt für die zusammengesetzten Funktionen:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = g(x) + h(x) \rightarrow F(x) = G(x) + H(x)}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=c\cdot g(x) \rightarrow F(x)=c\cdot G(x)}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=g(c\cdot x+d) \rightarrow F(x)=\frac{1}{c} \cdot G(c\cdot x+d)}
Hier findest du ein paar Beispiel Funktionen und ihre Stammfunktion.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = x^2 \rightarrow F(x) = \frac{1}{3}x^3 +c }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = x^2+2x^4 \rightarrow F(x) = \frac{1}{3}x^3+\frac{2}{5}x^5 +c }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = (2x+3)^4 \rightarrow F(x) = \frac{1}{2} \cdot \frac{1}{5}(2x+3)^5 +c = \frac{1}{10}(2x+3)^5 +c }Gelerntes Wiederholen und Vertiefen
Bearbeite folgende Aufgabe und nutze Zettel und Stift, um deine Rechnungen festzuhalten.
In einem Gezeitenkraftwerk strömt bei Flut das Wasser in einen Speicher und bei Ebbe wieder heraus. Das durchfließende Wasser treibt dabei Turbinen zur Stromerzeugung an. Der Graph zeigt vereinfacht die Durchflussrate d vom Meer in den Speicher.
a) Was bedeutet eine Kästchenfläche in der Abbildung im Sachzusammenhang?
b)In welchem Zeitraum nimmt die Wassermenge im Speicher am schnellsten zu und wann am schnellsten ab?
c)Wie viel Wasser befindet sich nach 6h und nach 12h im Speicher?
d)Wie geht es nach 12h vermutlich weiter?
Die folgenden Graphen zeigen die Geschwindigkeit einer Murmel. Ermittle jeweils die vom Startpunkt zurückgelegte Strecke in m nach 9 s. Du benötigst einen Zettel und einen Stift, um deine Rechnungen und Ergebnisse zu notieren.
a)- Fläche oberhalb der x-Achse: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 16\ FE}
- Flächer unterhalb der x-Achse: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4\ FE}
- Integral/orientierter Flächeninhalt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 16 - 4 = 12\ FE}
- Der Körper hat eine Strecke von 12 m vom Startpunkt zurückgelegt.
- Fläche oberhalb der x-Achse: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 20\ FE}
- Flächer unterhalb der x-Achse: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0\ FE}
- Integral/orientierter Flächeninhalt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 20\ FE}
- Der Körper hat eine Strecke von 20 m vom Startpunkt zurückgelegt.
- Fläche oberhalb der x-Achse: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 49,5\ FE}
- Flächer unterhalb der x-Achse: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 5\ FE}
- Integral/orientierter Flächeninhalt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 44,5\ FE}
- Der Körper hat eine Strecke von 44,5 m vom Startpunkt zurückgelegt.
Betrachte folgendes Applet. Lasse dir mithilfe von diesem folgende Funktionen abbilden.
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=1}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=x}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=x^2}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=x^3 + x^2 - 1}
Was fällt dir auf? Wo besteht der Zusammenhang zwischen der Funktion und seiner Stammfunktion? Wo sind charakteristische Punkte?
Dir sollte folgendes auffallen:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F'(x)=f(x) }
- Nullstellen bei
sind Extremstellen bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x)} . Beachte hier den Vorzeichenwechsel um sagen zu können, ob es sich um einen Hochpunkt oder Tiefpunkt handelt.
- Extremstellen bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)} sind Wendestellen bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x)}
- Wenn Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)} negativ bzw. positiv ist so ist bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x)} die Steigung negativ bzw. positiv.
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x)} kann durch eine beliebige Konstante nach oben oder unten verschoben werden, bleibt aber eine Stammfunktion von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)}

Ordne die Graphen der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) } mithilfe von charakteristischen Punkten den Graphen der Stammfunktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x) } zu. Falls du Schwierigkeiten mit der Zuordnung hast, schaue dir Aufgabe 3 an?
Auch hier kannst du den Vollbildmodus in der rechten, oberen Ecke einschalten, sodass du die Graphen der entsprechenden Funktionen besser erkennen kannst.
Aufgaben mittlerer Schwierigkeit
Der Boden eines 2 km langen Kanals hat die Form einer Parabel (siehe Abbildung). Dabei entspricht eine Längeneinheit 1 m in der Wirklichkeit. (Du benötigst zur Bearbeitung der Aufgabe Zettel und Stift.)
a) Gib den Inhalt der Querschnittsfläche A des Kanals an. Nimm dabei an, dass die Funktion f mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)= \frac{1}{4} \cdot x^2} den Grundverlauf des Kanals darstellt.
Es gibt mehrere Möglichkeiten, um den Inhalt der Querschnittsfläche des Kanal zu berechnen. Im folgenden werden 3 Möglichkeiten aufgeführt.
- Du berechnest das Integral von der Funktion f mit den Grenzen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (-4|4)} . Weiter berechnest du den Flächeninhalt des Rechtecks (schraffiert, siehe nachfolgende Abbildung 1). Abschließend subtrahierst du die Fläche des Integrals (Rot) von der des Rechtecks.
- Du erstellst eine zweite Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)=4} , welche den Wasserstand im Kanal wiederspiegelt. Die Fläche unterhalb des Graphen (das Integral) g mit den Grenzen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (-4|4)} entspricht dem Flächeninhalt des Rechtecks aus Möglichkeit 1. Nun kannst du wie in Möglichkeit 1 vorgehen. Du kannst aber auch das Integral von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g-f} mit den Grenzen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (-4|4)} , also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{-4}^{4} g-f} berechnen, was der gleichen Fläche entspricht (siehe Abbildung 2).
- Du verschiebst die Funktion um 4 Einheiten nach unten, sodass die x-Achse den Wasserspiegel entspricht. Anschließend berechnest du das Integral. Da dies negativ sein wird, musst du noch den Betrag davon nehmen (siehe Abbildung 3).
Beachte: Es wird zunächst nur Abbildung 1 angezeigt. Wenn du Abbildung 2 und Abbildung 3 ansehen möchtest, musst du die Pfeile über der Abbildung nutzen, um zur nächsten Abbildung zu gelangen.
Abbildung 2: Querschnitt des Kanals, der mit Hilfe des Integrals Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g-f} berechnet werden kann.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = \frac{1}{4} \cdot x^2, F(x) = \frac{1}{12} \cdot x^3} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) = 4, G(x) = 4 \cdot x } Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A= \int_{-4}^{4} g(x)-f(x) dx = 21{,}33}
Antwort: Die Querschnittsfläche des Kanals beträgt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 21{,}33\ m^2} .
b)
Wie viel Wasser [in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m^3}
] befindet sich im Kanal, wenn er komplett gefüllt ist?
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 21{,}33 \cdot 2000 = 42660}
Antwort: Es befinden sich Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 42660\ m^3} Wasser im Kanal, wenn er komplett gefüllt ist.c) Wie viel Prozent der maximalen Wassermenge befindet sich im Kanal, wenn er nur halb gefüllt ist?
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 7{,}54 \cdot 2000 = 15080} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{15080}{42660} \approx 0{,}35349}
Antwort: Wenn der Kanal nur halb gefüllt ist, befinden sich ca. 35% der maximalen Wassermenge im Kanal.
Skizziere eine beliebige Stammfunktion zu folgender Funktion auf dem Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle I=[-5,5]} . Zeichne zunächst die Funktion und dann eine zugehörige Stammfunktion in ein Koordinatensystem auf einen Zettel. Nutze charakteristische Punkte (Nullstellen, Extrempunkte, etc.), um den Graph der Stammfunktion zu zeichnen.
Was gilt für die Stammfunktion F von f, wenn f an der Stelle a einen lokalen Wendepunkt oder ein lokales Maximum bzw. lokales Minimum besitzt?
Wenn dir der Zusammenhang klar ist, kannst du diese Punkte einzeichnen und hast schon einen groben "Rahmen" für deine zu skizzierende Stammfunktion.
Ermittle die zugehörige Stammfunktion der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)} .
In der oberen, rechten Ecke der App ist ein kleiner Button, mit dem du in den Vollbildmodus schalten kannst. Dann sind die Funktionen und Stammfunktionen besser lesbar.
Solltest du beim bilden der Stammfunktion Probleme haben, schau dir nochmals die Definition der Stammfunktion, den Satz zur Bestimmung der Stammfunktion und die Beispiele dazu an. Dies findest du zu Beginn dieses Lernpfades.
Die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(t)=-t^2+6t} gibt die Wachstumsrate von Bakterien an, Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in Stunden, Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(t)} in Hundert Bakterien (siehe Figur 1). Zu Beginn waren 200 Bakterien vorhanden. (Du benötigst zur Bearbeitung der Aufgabe Zettel und Stift.)
a) Wie lautet die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(t)} , die die vorhandene Anzahl von Bakterien zum Zeitpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} angibt?
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(t)=-\frac{1}{3}\cdot t^3+3t^2}
Die Stammfunktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(t)} gibt die Anzahl der Bakterien an, wenn zu Beginn null Bakterien vorhanden sind.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(t) = 2+\int_{0}^{t} f(t)dt}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(t) = 2 - \frac{1}{3}\cdot t^3+3t^2 }
Bei der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(t)} wird 2 addiert, da zu Beginn 200 Bakterien vorhanden sind und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(t)} die Anzahl der Bakterien in Hundertstel angibt.
b) Wie viele Bakterien existieren nach 4 Stunden und nach 6 Stunden?
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(4) = \frac{86}{3} \approx 28,7 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 28,7 \cdot 100=28700 }
Antwort: Nach 4 Stunden sind es ca. 28700 Bakterien.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(6) = 38 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 38 \cdot 100=38000}
Antwort: Nach 6 Stunden sind es ca. 38000 Bakterien.Knobelaufgaben
Die biologische Aktivität in einem Teich kann man durch die Änderungsrate beschreiben, mit der CO₂ dem Wasser zugefügt oder entnommen wird. Pflanzen entnehmen tagsüber dem Wasser im Rahmen der Photosynthese CO₂ und geben Nachts O₂ ab. Tiere geben durch ihre Atmung CO₂ an das Wasser ab. Bei Tagesanbruch werden 2,6ME CO₂ im Teich festgestellt. (ME steht hier für eine nicht so ganz gebräuchliche Mengen-Einheit, in der die Stoffmenge von CO₂ gemessen werden kann.) Biologen haben die Zu- und Abnahmerate Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z(t)} über einen ganzen Tag, beginnend mit dem Sonnenaufgang, gemessen. Die Werte werden in der Einheit ME pro Stunde angegeben. (Du benötigst zur Bearbeitung der Aufgabe einen Zettel und Stift)
Zeit t in h | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
Änderungsrate z(t) in ME/h | 0,0 | -0,041 | -0,037 | -0,026 | -0,009 | 0,046 | 0,031 | 0,019 | 0,006 |
a) Begründe, dass der Teich Pflanzen enthält.
b) Berechne für die Zeiten Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t = 0, 3, 6, 12, 24} die Gesamtmenge von CO₂ im Wasser und stelle die Ergebnisse tabellarisch dar. Runde jedes Ergebnis auf zwei Nachkommastellen.
Zeit t in h | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
Gesamtmenge CO₂ in ME | 2,33 | 2,33 | 2,45 | 2,53 |
- Für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t=0} : Bei Tagesanbruch wurden 2,6 ME CO₂ im Teich gemessen (siehe Aufgabe).
- Für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t=3} : Wir betrachten die Fläche auf dem Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [0.3]} . Die erste Seite des Dreiecks ist die Länge des Intervalls und beträgt 3. Die zweite Seite des Dreiecks ist der Punkt (3,-0,041) und damit -0,041. Daraus ergibt sich die folgende Gesamtmenge:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_1 = \frac {3h \cdot (-0,041 \frac{ME}{h})}{2} + 2,6 ME} ≈ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2,54 ME} (aufgerundet)
- Für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t=6} : Wir betrachten die Fläche Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_2} auf dem Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [0,6]} . Den Flächeninhalt auf dem Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [0,3]} kennen wir bereits als Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_1} . Die Fläche unter dem Graphen auf dem Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [3,6]} besteht aus einer Vierecks- und einer Dreiecksfläche und wird wie folgt berechnet: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_2 = A_1 + 3h \cdot (-0,037 \frac{ME}{h}) + \frac {3h \cdot (-0,005 \frac{ME}{h})}{2}} ≈ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2,42 ME} (aufgerundet).
- Für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t= 12, 24} mit dem gleichen Verfahren.
Zeit t in h | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
Gesamtmenge CO₂ in ME | 2,6 | 2,54 | 2,42 | 2,33 | 2,28 | 2,33 | 2,45 | 2,53 | 2,57 |
c) Wann war der CO₂-Gehalt am niedrigsten? Wie groß war er?
d) Welche Bedeutung haben die folgenden Integrale für die vorgegebene Situation?
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{12} z(t) dt }
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{12}^{24} z(t) dt }
Das Integral in dieser Aufgabe gibt den Bestand zu einem gegebenen Zeitintervall an. Was bedeutet das in diesem Kontext?
Falls dir die allgemeine Bedeutung nicht mehr präsent ist, schau dir die Beispiele und Definition zu Beginn des Lernpfadkapitels an.- Das Integral beschreibt die Durchschnittliche CO₂ Menge im Teich von morgens bis nach 12 Stunden. Die Fläche liegt unterhalb der x-Achse, also wurde im betreffenden Zeitraum mehr CO₂ entnommen als abgegeben, der Gesamtbestand ist gesunken.
- Das Integral beschreibt die Durchschnittliche CO₂ Menge im Teich von 12 bis nach 24 Stunden. Die Fläche liegt oberhalb der x-Achse, also wurde im betreffenden Zeitraum mehr CO₂ abgegeben als entnommen, der Gesamtbestand ist also gestiegen.
- Das Integral beschreibt die Durchschnittliche CO₂ Menge im Teich von morgens bis nach 24 Stunden. Das Integral gibt an, wie viel CO₂ nach 24 Stunden im Vergleich zum Anfangsbestand hinzugekommen ist bzw. entnommen wurde.
Ein Technik-Unternehmen hat ein neues Smartphone auf den Markt gebracht. Nach 9 Monaten will das Unternehmen prüfen, wie lukrativ das neue Handy in den ersten 9 Monaten war. Der monatliche Gewinn, der durch das Smartphone eingespielt wurde, kann durch die folgende Funktion dargestellt werden: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=-x^3+4,5x^2+34x-50}
Die x-Achse gibt die Anzahl der Monate an und die y-Achse den Gewinn in Millionen (€).
a) Berechne den Ertrag, den das Unternehmen in den ersten 2 Monaten, 7 Monaten und nach den kompletten 9 Monaten durch das Smartphone eingespielt hat.
Stammfunktion: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x) = -\frac{1}{4}x^4+\frac{4,5}{3}x^3+17x^2-50x }
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{2} f(x) dx = F(2) - F(0) = -24 - 0 = -24}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{7} f(x) dx = F(7) - F(0) = 397,25}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{9} f(x) dx = F(9) - F(0) = 380,25}
b) Interpretiere die Ergebnisse aus der Aufgabe a) und überlege dir mögliche Begründungen für die erzielten Beträge. Sollte das Smartphone weiterhin produziert werden?
Hier sollst du dir Gedanken machen, ob einerseits deine Ergebnisse aus den vorherigen Aufgaben Sinn ergeben, und anschließend deine eigenen Begründungen der Ergebnisse festhalten. Zum Bespiel, könnte der anfängliche Verlust mit höheren Produktionskosten als Verkaufseinnahmen begründet werden (Warum? plausible Begründung).
Zur Überlegung, ob es lukrativ ist, das Smartphone weiterhin zu produzieren, solltest du dir den Gewinn bzw. Verlust der gesamten 9 Monate anschauen und natürlich den Verlauf der Funktion, die die Einnahmen wiederspiegelt.c) In welchem Zeitraum erbringt das Smartphone ausschließlich Gewinn für das Unternehmen? Wie viel wird in dem Zeitraum eingenommen?
Nullstellen berechnen: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = 0 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1 = -4,79 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = 1,31 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3 = 7,98 }
Es kommen aufgrund des Aufgabenkontextes nur die Nullstellen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} in Betracht. Diese wählt man als Grenzen für das zu berechnende Integral.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{1,31}^{7,98} f(x) dx = F(7,98) - F(1,31) = 465,71}
Beachte: Diese Aufgabe ist erfunden und entspricht nicht der Realität! Es ist eine rein hypothetische Aufgabe!
Bei einer Coronavirusinfektion ergibt sich die Anzahl der Viren (in Milliarden) nach folgender Funktionsgleichung:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = \frac{1}{2}x^2} (x: Anzahl der Tage)
Wie bei fast allen Virusinfektionen vergeht auch beim derzeitig kursierenden Coronavirus eine gewisse Zeit von der Ansteckung bis zur Erkrankung (Inkubationszeit). Das Robert Koch-Institut schätzt die Inkubationszeit für SARS-CoV-2 auf 3 Tage.
Ein halbes Jahr später hat die Forschung das Medikament „Gibcovid19einenkorb“ entwickelt, um der Ausbreitung des Coronavirus entgegenzuwirken. Dieses Medikament kann erst nach 3 Tagen verabreicht werden, da dann die ersten Symptome auftreten können. Die Abnahme der Viren bei Einnahme des Medikaments zum Zeitpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = 3} Tagen lässt sich mit folgender Funktion beschreiben:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) = -\frac{1}{2}x^2 + 6x -9} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} ≥ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3}
a) Ein Patient ist mit dem Coronavirus infiziert und bekommt nach 3 Tagen das Medikament verabreicht. Berechne nach wie vielen Tagen alle Viren im Körper des Patienten abgestorben sind (Runde das Ergebnis sinnvoll).
Es handelt sich um eine aus zwei Teilfunktionen zusammengesetzte Funktion:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = \frac{1}{2}x^2} , für 0 ≤ x ≤ 3 und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) = -\frac{1}{2}x^2 + 6x -9} , für 3 ≤ x ≤ a.
Bestimme die Nullstelle des zweiten Funktionsterms für x≥3:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) = 0 = g(a)} ↔ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{2}x^2 + 6x -9 = 0} ↔ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x^2 -12x + 18 = 0}
Anwendung der p/q Formel:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1 = -6 + \sqrt{6^2 - 18}} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1 = 6 + 3 \cdot \sqrt{2}} ≈ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 10,243}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = -6 - \sqrt{6^2 - 18}} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} ≈ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1,757} < Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3}
Antwort: Nach etwa 11 Tagen sind alle Coronaviren gestorben.b) Die Fläche zwischen dem Graphen und der x-Achse ist ein Maß für die schädigende Wirkung der Coronaviren, auch Wirkungsfaktor genannt. Gesundheitliche Schäden können auftreten, wenn der Wert 60 WE (Wirkungseinheiten) überschreitet. Berechne den gesamten Wirkungsfaktor bis zum völligen Abklingen der Krankheit, wenn das Medikament nach 3 Tagen eingenommen wird.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle W(x) = \int_{0}^{3} \frac{1}{2}x^2 dx + \int_{3}^{6 + 3 \cdot \sqrt{2}} (\frac{1}{2}x^2 + 6x -9) dx }
Wir berchnen beide Teilintegrale einzeln:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{3} \frac{1}{2}x^2 dx = \frac{1}{6} \cdot 3^3 - 0 = \frac{9}{2}}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{3}^{6 + 3 \cdot \sqrt{2}} (\frac{1}{2}x^2 + 6x -9) dx = [-\frac{1}{6} \cdot (6 + 3 \cdot \sqrt{2})^3 + 3 \cdot (6 + 3 \cdot \sqrt{2})^2 - 9 \cdot (6 + 3 \cdot \sqrt{2}) -(-\frac{1}{6} \cdot 3^3 + 3 \cdot 3^2 - 9 \cdot 3)] = \frac{9}{2} + 18 + 18 \cdot \sqrt{2}}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle W(x) = \frac{9}{2} + \frac{9}{2} + 18 + 18 = 27 + 18 \cdot \sqrt{2}}
≈
Um diese Aufgabe lösen zu können, musst du mit e-Funktionen vertraut sein.
Bei einem Sprint über 100 m treten Lars und René gegeneinander an. Lars sprintet mit der Geschwindigkeitsfunktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle v_L(t)=0,25t+10 \cdot (1-e^{-t})} . René sprintet mit der Geschwindigkeitsfunktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle v_R(t)=12 \cdot (1-e^{-t})+r \cdot t^2} .
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} ist jeweils die Zeit in Sekunden ab dem Start des Laufes und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle v(t)} die Geschwindigkeit von Lars und René in Meter pro Sekunde.
a) Gib die Funktionen an, die den zurückgelegten Weg zum Zeitpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} angibt.
Bedenke: Die Ableitung des Weges gibt die Geschwindigkeit an. Die Ableitung der Geschwindigkeit gibt die Beschleunigung an. Folgende Abbildung verdeutlicht dies.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_L(t)= \frac{1}{8} \cdot t^2+10 \cdot (t+e^{-t})}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_R(t)=12 \cdot (t+e^{-t})+\frac{r}{3} \cdot t^3}b) Zeige, dass Lars ungefähr 9,8 Sekunden benötigt.
Es muss also folgendes gelten: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{9,8} v_L(t) dt = 100 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{9,8} v_L(t) dt = V_L(9,8)-V_L(0)}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle =\frac{1}{8} \cdot 9,8^2+10 \cdot (9,8+e^{-9,8}) - \frac{1}{8} \cdot 0^2+10 \cdot (0+e^{-0}) = 100 }c) Bestimme den Wert von r so, dass René nach 9,69 Sekunden ins Ziel kommt.
Es muss also folgendes gelten: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{9,69} v_R(t) dt=100 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{9,69} v_R(t) dt = V_R(9,69)-V_b(0) }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle =12 \cdot (9,69+e^{-9,69})+\frac{r}{3} \cdot 9,69^3-12 \cdot (0+e^{-0})+\frac{r}{3} \cdot 0^3 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \approx 116,28+303,28r-12 = 100 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow r\approx -0,0141}d) Wie viel Meter sind Lars und René nach 5 s von einander entfernt, wenn r dem in c) ermittelten Wert entspricht?
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{0}^{5} v_L(t) dt -\int_{0}^{5} v_R(t) dt = \int_{0}^{5} v_L(t)-v_R(t) dt = -4,3}
Antwort: Lars und René sind 4,3 m voneinander entfernt.