Benutzer:Buss-Haskert/Wurzeln: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
(geogebra link verändert) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 16: | Zeile 16: | ||
c) Kannst du Quadrate mit dem Flächeninhalt von 2 Kästchen (3 Kästchen) zeichnen?|Arbeitsmethode}} | c) Kannst du Quadrate mit dem Flächeninhalt von 2 Kästchen (3 Kästchen) zeichnen?|Arbeitsmethode}} | ||
<ggb_applet id="vwphyusf" width="1521" height="733" border="888888" /><br> | <ggb_applet id="vwphyusf" width="1521" height="733" border="888888" /><br> | ||
===4.2 (Quadrat)wurzel - Definition=== | ===4.2 (Quadrat)wurzel - Definition=== |
Version vom 30. Dezember 2020, 06:10 Uhr
1) Potenzen: Definition
2) Potenzgesetze
3) Sehr große und sehr kleine Zahlen: Wissenschaftliche Schreibweise
4) Wurzeln: Definition
SEITE IM AUFBAU!!
4 Wurzeln/Quadratwurzeln - Definition
4.1 Wurzeln - Einführung

4.2 (Quadrat)wurzel - Definition
Teste dich:
Wiederholung Quadratzahlen:
11² = 121
12² = 144
13² = 169
14² = 196
15² = 226
16² = 256
17² = 289
18² = 324
19² = 361
20² = 400
Jetzt bist du fit für Aufgaben aus dem Buch:
Berechne zunächst die Fläche des Rechtecks A = a∙b
a) A = 18∙8 = 144
Nun überlege, welche Seitenlänge das Quadrat mit dem Flächeninhalt A = 144 (m²) besitzt:
144 = a² |Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \surd}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{144}}
= a
12 = a
Die Oberfläche eines Würfels besteht aus 6 Quadraten:
O = 6a²
24 = 6a² |:6
4 = a² |Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \surd}
Zähle die Quadratflächen, die zur Oberfläche gehören.
Lösung zu a) 22 Quadrate
4.3 Irrationale Zahlen - Bestimmen von Quadratwurzeln
Quadratwurzeln von Zahlen, die keine Quadratzahl sind, lassen sich nur annähern.
So liegt z.B. der Wert von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}}
im Intervall [1;2], also zwischen und 1 und 2, denn 1² < 2 < 2².
Dieses Intervall kannst du verkleinern, um den Wert von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}}
auf mehrere Nachkommastellen anzunähern. Das nachfolgende Applet verdeutlicht dieses Vorgehen, die sogenannte Intervallschachtelung:

(von W. Wengler)
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}}
hat unendlich viele Nachkommaziffern, die nie periodisch werden. Man kann diese Zahl also nicht als Bruch darstellen.
Den meisten ist es zwar egal, doch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}} ist irrational...
4.4 Konstruktion von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}}
Ziehe den Schieberegler:

4.4 Kubikwurzeln - 3. Wurzel
Wenn du die Kantenlänge eines Würfels mit einem Volumen von 8cm³ bestimmen möchtest, muss du die Zahl finden, die dreimal mit sich selbst multipliziert 8 ergibt:
2Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cdot}
2Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cdot}
2 = 8, die Kubikwurzel ist dann wie folgt definiert:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt[3]{8}}
=2
Die 3. Wurzel aus 8 ist 2. Die 3. Wurzel heißt auch Kubikwurzel (von engl. "cube" = Würfel).
Beachte Schreibweisen:
geg: V = 512 cm³; ges: Kantenlänge a
a3 = 512 &mnsp;|Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt[3]{}}
a = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt[3]{512}}
Beachte, dass du zwei Würfel gegeben hast, also gilt:
2a3 = 843,75 |:2