Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in allgemeinen Dreiecken: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 236: | Zeile 236: | ||
sin α = <math>\tfrac{h_c}{b}</math> |·b<br> | sin α = <math>\tfrac{h_c}{b}</math> |·b<br> | ||
b · sin α = h<sub>c</sub> <br> | b · sin α = h<sub>c</sub> <br> | ||
10,5 · sin(37°) = h<sub> | 10,5 · sin(37°) = h<sub>c</sub><br> | ||
6,3 (cm) <math>\approx</math> h<sub> | 6,3 (cm) <math>\approx</math> h<sub>c</sub> <br></div> | ||
<div class="width-1-3"> | <div class="width-1-3"> | ||
② Bestimme c<sub>1</sub><br> | ② Bestimme c<sub>1</sub><br> | ||
Zeile 268: | Zeile 268: | ||
Winkelsumme<br> | Winkelsumme<br> | ||
α + β + γ = 180° |- α; -β<br> | α + β + γ = 180° |- α; -β<br> | ||
γ = 180° - β - | γ = 180° - β - α<br> | ||
γ= 180° - 37° - 64,2°<br> | γ= 180° - 37° - 64,2°<br> | ||
γ = 78,8°</div> | γ = 78,8°</div> |
Version vom 15. März 2023, 11:48 Uhr
1) Sinus, Kosinus, Tangens
2) Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken
3) Berechnungen in allgemeinen Dreiecken
3 Strecken- und Winkelberechnungen in allgemeinen Dreiecken
Die Seitenverhältnisse Sinus, Kosinus und Tanges gelten nur für rechtwinklige Dreiecke.
Um in allgemeinen Dreiecken Strecken und Winkel berechnen zu können, zerlege das Dreieck mithilfe einer Höhe in zwei rechtwinklige Dreiecke.
3.1 Beispiel 1: Eine Seite und zwei Winkel sind gegeben
1. Möglichkeit: Zerlege das Dreieck durch die Höhe ha ein zwei rechtwinklige Dreiecke.
① Bestimme γ:
Winkelsummensatz
γ = 180° - α - β
= 180° - 42° - 62°
② Berechne ha:
sin β = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_a}{c}}
| ·c
c · sin β = ha
8,5 · sin(42°) = ha
③ Berechne b:
sin γ = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_a}{b}}
| ·b
b · sin γ = ha | : sin γ
b = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_a}{sin\gamma}}
b = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\text{5,7}}{\text{sin(76°)}}}
Berechne a:
cos β = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{a_1}{c}}
| ·c
c · cos β = a1
8,5 · cos (42°) = a1
cos γ = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{a_2}{b}}
| ·b
b · cos γ = a2
5,9 · cos (76°) = a2
a = a1 + a2
= 6,3 + 1,4
2. Möglichkeit: Zerlege das Dreieck durch die Höhe hb ein zwei rechtwinklige Dreiecke.
① Bestimme γ:
Winkelsummensatz
γ = 180° - α - β
= 180° - 42° - 62°
② Berechne hb:
sin α = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_b}{c}}
| ·c
c · sin α = hb
8,5 · sin(62°) = hb
③ Berechne a:
sin γ = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_b}{a}}
| ·a
a · sin γ = hb | : sin γ
a = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_b}{sin\gamma}}
a = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\text{7,5}}{\text{sin(76°)}}}
Berechne b:
cos α = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{b_1}{c}}
| ·c
c · cos α = b1
8,5 · cos (62°) = b1
cos γ = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{b_2}{a}}
| ·a
a · cos γ = b2
7,7 · cos (76°) = b2
b = b1 + b2
= 4,0 + 1,9
3.2 Beispiel 2: Zwei Seiten und der eingeschlossene Winkel sind gegeben
1. Möglichkeit: Zerlege das Dreieck durch die Höhe ha ein zwei rechtwinklige Dreiecke.
① Bestimme ha:
sin γ = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_a}{b}}
|·b
b · sin γ = ha
5,8 · sin(65°) = ha
② Bestimme a2
cos γ = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{a_2}{b}}
|·b
b · cos γ = a2
5,8 · cos(65°) = a2
③ Bestimme a1
a – a2= a1
8,2 - 3,8 = a1
④ Bestimme β
tan β = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_a}{a_1}}
tan β = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{5,2}{5,7}}
|tan-1
⑤ Bestimme c
sin β = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_a}{c}}
|·c
c · sin β = ha |: sin β
c = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_a}{sin\beta}}
c = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\text{5,2}}{\text{sin (42,4°)}}}
c Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \approx}
7,7 (cm)
ODER:
c² = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_a^2 + a_1^2}
|Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \surd}
c= Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{h_a^2 + a_1^2}}
c = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{5,2^2 + 5,7^2}}
c Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \approx}
7,7 (cm)
⑥ Bestimme den letzten Winkel α
Winkelsumme
α + β + γ = 180° |- β; -γ
α = 180° - β - γ
α = 180° - 42,4° - 65°
α = 72,6°
2. Möglichkeit: Zerlege das Dreieck durch die Höhe hb ein zwei rechtwinklige Dreiecke.
① Bestimme hb:
sin γ = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_b}{a}}
|·a
a · sin γ = hb
8,2 · sin(65°) = hb
② Bestimme b2
cos γ = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{b_2}{a}}
|·a
a · cos γ = b2
8,2 · cos(65°) = b2
③ Bestimme b1
b – b2= b1
5,8 - 3,5 = b1
④ Bestimme α
tan α = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_b}{b_1}}
tan α = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{7,4}{2,3}}
|tan-1
⑤ Bestimme c
sin α = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_b}{c}}
|·c
c · sin α = hb |: sin α
c = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_b}{sin\alpha}}
c = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\text{7,4}}{\text{sin (72,7°)}}}
c Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \approx}
7,8 (cm)
ODER:
c² = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_b^2 + b_1^2}
|Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \surd}
c= Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{h_b^2 + b_1^2}}
c = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{7,4^2 + 2,3^2}}
c Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \approx}
7,7 (cm)
⑥ Bestimme den letzten Winkel β
Winkelsumme
α + β + γ = 180° |- α; -γ
β = 180° - α - γ
β= 180° - 72,7° - 65°
Du merkst, es kommt zu Rundungsungenauigkeiten.
3.3 Beispiel 3: Zwei Seiten und ein anliegender Winkel sind gegeben
Erkläre, warum es hier nur eine Möglichkeit gibt, das Dreieck zu zerlegen: die Höhe hc .
① Bestimme hc:
sin α = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_c}{b}}
|·b
b · sin α = hc
10,5 · sin(37°) = hc
② Bestimme c1
cos α = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{c_1}{b}}
|·b
b · cos α = c1
10,5 · cos(37°) = c1
③ Bestimme c2
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_c^2 + c_2^2}
= a² |-Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_c^2 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c_2^2}
= a² - Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_c^2}
|Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \surd}
c2= Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{a^2 - h_b^2}}
c2 = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{7^2 - 6,3^2}}
④ Bestimme c:
c = c1 + c2
= 8,4 + 3,1
⑤ Bestimme β
sin β = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{h_c}{a}}
sin β = Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{6,3}{7}}
|sin-1
Winkelsumme
α + β + γ = 180° |- α; -β
γ = 180° - β - α
γ= 180° - 37° - 64,2°
Das Video fasst das Vorgehen noch einmal zusammen:
3.4 Anwendungsaufgaben
Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann den fehlenden Winkel, die Länge der entsprechenden Höhe und die Längen der Seiten a und b.
oder
Skizziere das zugehörige Dreieck und zerlege es in zwei rechtwinklige Teildreiecke. Bestimme dann schrittweise die fehlenden Größen.
oder
Erstelle eine Skizze zur Aufgabe und beschrifte sie vollständig.
Zerlege das Dreieck durch eine Höhe in zwei rechtwinklige Teildreiecke.
oder
Die Dachfläche besteht aus 4 Dreiecksflächen. Bestimme also die Fläche eines Dreiecks und multipliziere diesen Flächeninhalt mit 4. Die Skizze hilft dir bei der Bestimmung der nötigen Größen. (ADreieck= Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{g\cdot h}{2}}
)
Betrachte das linke Dreieck ABL. Zerlege es in rechtwinklige Teildreiecke (ohne die gegebene Seite c zu teilen). Die Skizze hilft dir für deinen Lösungsplan.
Bestimme ha, δ1, a1, a2, a.
Betrachte zur Lösung das linke Dreieck BCL. Gegeben ist nun auch aus Teil a) die Länge der Strecke a = 3,63 sm. Berechne den Nebenwinkel β2 von β und den Winkel δ2 mihilfe der Winkelsumme. Zerlege auch dieses Dreieck wieder in zwei rechtwinklige Teildreiecke. Die Skizze hilft dir, die nötigen Rechenschritte zu planen.
Zwischentest 4: Anwendung in einem beliebigen Dreieck
3.5 Formel für den Flächeninhalt beliebiger Dreiecke (mit Sinus)