Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Quadratische Funktionen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 372: | Zeile 372: | ||
|2=Tipp 2 | |2=Tipp 2 | ||
|3=schließen}} | |3=schließen}} | ||
{{Lösung versteckt|1=Falls du nicht mehr genau weißt, wie du die pq-Formel aufstellen und berechnen kannst, dann schau nochmal in Tipp | {{Lösung versteckt|1=Falls du nicht mehr genau weißt, wie du die pq-Formel aufstellen und berechnen kannst, dann schau nochmal in Tipp 3 von Aufgabe 10 nach. Achte darauf, dass vor dem <math>x^2</math> kein Vorfaktor stehen darf. | ||
|2=Tipp 3 | |2=Tipp 3 | ||
|3=schließen}} | |3=schließen}} |
Version vom 22. Mai 2019, 11:50 Uhr
In diesem Lernpfad geht es darum, dein Wissen im Bereich quadratischer Funktionen zu vertiefen.
Dazu werden dir Informationen und Aufgaben zur Scheitelpunktform, der Umwandlung zwischen Scheitelpunktform und Normalform sowie zur Berechnung von Nullstellen bereitgestellt. Zusätzlich erwarten dich zwei Anwendungsaufgaben, in welchen du die zuvor gelernten Inhalte testen kannst.
In diesem Lernpfad findest du Aufgaben mit einem *. Bei diesen handelt es sich um Forderaufgaben. Aufgaben mit ** sind anspruchsvolle Knobelaufgaben. Hat eine Aufgabe kein *, dann ist die Aufgabe zur Wiederholung und Vertiefung der Inhalte geeignet.
Inhaltsverzeichnis
Scheitelpunktform
Wir schauen uns die Funktion an. Funktionen dieser Art heißen qua dra tisch e Funktionen. Der Graph einer solchen Funktion ist eine Pa ra bel. Der höchste bzw. der tiefste Punkt eines solchen Funktionsgraphen heißt Schei tel punkt. Liegt die Funktionsgleichung in der Scheitelpunktform vor, wie es hier der Fall ist, dann kann der Scheitelpunkt S direkt aus der Funktionsgleichung abgelesen werden. Der Parameter d ist die x-Koordinate und der Parameter e ist die y-Koordinate des Scheitelpunkts.
S(d,e).
Ist der Parameter a kleiner als Null (a<0), dann ist der Graph der Funktion g nach un ten geöffnet.
Ist a größer als Null (a>0), dann ist der Graph von g nach o ben geöffnet.
Ist a größer als Eins (a>1) oder kleiner als minus Eins (a<-1), dann sieht der Graph von g schma ler aus. Man sagt, dass in diesem Fall der Graph ge streckt wird.
Liegt a zwischen minus Eins und Eins (-1<a<1), dann sieht der Graph von g brei ter aus. Man sagt, dass in diesem Fall der Graph ge staucht wird.
Ist d größer als Null (d>0), dann wird der Graph von g nach rechts verschoben.
Ist d kleiner als Null (d<0), dann wird der Graph von g nach links verschoben.
Ist e kleiner als Null (e<0), dann wird der Graph von g nach un ten verschoben.
Ist e größer als Null (e>0), dann wird der Graph von g nach o ben verschoben.
Gegeben seien die Funktion und die Punkte
und
.
a) Überprüfe rechnerisch, ob die Punkte A, B, C, D und E auf dem Graphen von f liegen.
b) Zeichne den Graphen der Funktion f und die Punkte A-E in dein Heft. Vergleiche anschließend die Ergebnisse aus a) mit deiner Zeichnung
Ordne die folgenden Funktionsgleichungen den zugehörigen Graphen zu. Hinweis: Du kannst das Bild der Funktionsgraphen vergrößern, indem du mit der Maus auf diese klickst.
a steht für die Verschiebung in X-Richtung.
b für die Verschiebung in Y-Richtung.Beispiele sind:
hat ihren Scheitelpunkt bei (3, 2)
Stell die zugehörigen Funktionsgleichungen in Scheitelpunktsform auf. Wähle im Anschluss die richtige Lösung aus.
Die Scheitelpunktform hat die Funktionsgleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)=a\cdot(x-d)^2+e} . Probiere aus was passiert, wenn du die Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a, d} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle e} veränderst. Beobachte die Funktionsgleichung und den zugehörigen Graphen.

Um den Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a} zu bestimmen gibt es verschiedene Möglichkeiten.
Möglichkeit 1: Du kannst einen beliebigen weiteren Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (x,y}
) aus dem Graphen ablesen und in die Funktionsgleichung einsetzen. Im Anschluss musst du nur noch die Gleichung nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a}
auflösen. Bei Bedarf kannst Du gerne dein Heft benutzen, um dir Rechenschritte zu notieren.
Jonas wirft einen Stein vom Ufer in einen See. Die Flugbahn des Steins lässt sich mit der quadratischen Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)=-\frac{1}{10}\cdot(x-1)^2+\frac{5}{2}} beschreiben, wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} die Entfernung des Steins vom Ufer und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)} die Höhe des Steins (jeweils in Meter) beschreibt.
a) An welcher Stelle erreicht der Stein seinen höchsten Punkt?
b) Zeichne die Flugbahn des Steins in dein Heft.
c)* Wie weit fliegt der Stein?
Du musst zunächst die Nullstellen der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)}
bestimmen. An einer dieser Nullstellen trifft der Stein auf die Wasseroberfläche.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} && g(x) &&=&& 0 \\ &\Leftrightarrow& 0 &&=&& -\frac{1}{10}\cdot(x-1)^2+\frac{5}{2} &\mid \cdot(-10)\\ &\Leftrightarrow& 0 &&=&& (x-1)^2-25 &\mid +25 \\ &\Leftrightarrow& 25 &&=&& (x-1)^2 &\mid \sqrt{} \\ \end{array} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} &\Rightarrow&(x_1-1) = -5& \textrm{sowie}& (x_2-1)=5\\ \end{array} }
Also folgt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1=-4}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2=6}
. Damit haben wir zwei Nullstellen.
Umwandlung Scheitelpunktform und Normalform
Bisher hast du dich intensiv mit der Scheitelpunktform beschäftigt. In diesem Abschnitt wirst du auch mit der Normalform einer quadratischen Funktion arbeiten. Dafür benötigst du die ersten beiden Binomischen Formeln. In dem folgenden Merksatz sind diese dargestellt. Falls du bei den nachfolgenden Aufgaben Schwierigkeiten bei der Umwandlung der Binomischen Formeln hast, dann scroll bis zu diesem Merksatz hoch und schau ihn dir nochmal an.
1. Binomische Formel:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (a+b)^2=a^2+2ab+b^2 }
Fülle den Lückentext aus, indem du auf eine Lücke klickst und die richtige Antwort auswählst.
Fülle den Lückentext aus, indem du auf eine Lücke klickst und die richtige Antwort auswählst.
Wandle in deinem Heft die Funktionen f und g in die Normalform um und die Funktionen i und j in die Scheitelpunktform. Ordne anschließend die gleichen Funktionen einander zu.
Hinweis: Es bleiben am Ende drei Funktionsgleichungen übrig.
[Lösung anzeigen][Lösung ausblenden]
[Lösung anzeigen][Lösung ausblenden]
[Lösung anzeigen][Lösung ausblenden]
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} h(x) &=& x^2-14x-4 &\mid \, quadratische \, Erg\ddot{a}nzung \\ &=& x^2-14x +7^2-7^2-4 &\mid \, 2. \, Binomische \, Formel \, r\ddot{u}ckw\ddot{a}rts \, anwenden \\ &=& (x-7)^2-7^2-4 &\mid \, zusammenfassen \\ &=& (x-7)^2 -53 \end{array} }
[Lösung anzeigen][Lösung ausblenden]
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} i(x) &=& -2 \cdot x^2 -12x -11 &\mid \, (-2) \, ausklammern \\ &=& -2 \cdot [x^2+6x+\frac{11}{2}] &\mid \, quadratische\, Erg\ddot{a}nzung \\ &=& -2 \cdot [x^2+6x+3^2-3^2+\frac{11}{2}] &\mid \, 1. \, Binomische \, Formel \, r\ddot{u}ckw\ddot{a}rts \, anwenden \\ &=& -2 \cdot [(x+3)^2-9+\frac{11}{2}] &\mid \, zusammenfassen \\ &=& -2 \cdot [(x+3)^2-\frac{7}{2}] &\mid \, ausmultiplizieren \\ &=& -2 \cdot (x+3)^2 +7 \end{array} }
Wähle die Antwortmöglichkeit A,B,C oder D, welche die angefangene Gleichung zu einer korrekten quadratischen Gleichung ergänzt.
Die binomischen Formeln lauten:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (a+b)^2=a^2+2*ab+b^2}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (a-b)^2=a^2-2*ab+b^2}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (a+b)*(a-b)=a^2-b^2}Nullstellen
Bestimme jeweils die Nullstellen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)=-3(x-1)^2+3 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)=2x^2-8x+6 }
Da einige Rechenschritte notwendig sind, solltest du dein Heft benutzen.
Zur Erinnerung: Nullstellen sind diejenigen x-Werte, die eingesetzt in die Funktion 0 ergeben. Setze also zunächst Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)=0}
bzw. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)=0}
Es gibt unterschiedliche Möglichkeiten, diese Gleichung aufzulösen: Bei einer Funktion in Scheitelpunktform hilft es in der Regel, den Term Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (x-d)^2}
auf einer Seite zu isolieren und dann auf beiden Seiten die Wurzel zu ziehen.
Weitere nützliche Hilfsmittel sind pq-Formel, quadratische Ergänzung und Mitternachtsformel.
Im Unterricht habt ihr sicherlich die pq-Formel kennengelernt. Diese besagt:
Eine Gleichung der Form Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x^2+px+q=0} hat die Lösungen
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_{1} = -\frac{p}{2}-\sqrt{\left( \frac{p}{2}\right)^2-q}} sowie Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_{2} = -\frac{p}{2}+\sqrt{\left( \frac{p}{2}\right)^2-q}}
Die pq-Formel ist z.B. für die Bestimmung der Nullstellen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)} sehr nützlich.Eine Möglichkeit die Nullstellen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)}
zu bestimmen lautet wie folgt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} && g(x) &&=&& 0 \\ &\Leftrightarrow& 0 &&=&& -3(x-1)^2+3 &\mid :(-3) \\ &\Leftrightarrow& 0 &&=&& (x-1)^2-1 &\mid +1 \\ &\Leftrightarrow& 1 &&=&& (x-1)^2 &\mid \sqrt{} \\ \end{array} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} &\Rightarrow&(x_1-1) = -1& \textrm{sowie}& (x_2-1)=1\\ \end{array} }
Diese Funktion ist in Normalform angegeben. Du kannst also nach wenigen Rechenschritten auf die pq-Formel zurückgreifen, um die Nullstellen zu bestimmen:
Betrachte Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)=0 }
, d.h. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0 = 2x^2-8x+6}
und teile dann beide Seiten durch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2}
.
Du erhälst die Gleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0 = x^2-4x+3}
Durch Anwenden der pq-Formel folgt
⇔ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_{1} = -\frac{-4}{2}-\sqrt{\left( \frac{-4}{2}\right)^2-3}}
sowie Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_{2} = -\frac{-4}{2}+\sqrt{\left( \frac{-4}{2}\right)^2-3}}
⇔ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1 = 2-1}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = 2+1}
Anwendungsaufgabe
Baseball ist eine der beliebtesten Sportarten der Welt. Beim Wurf erreicht der Ball Geschwindigkeiten bis zu 160km/h. Wenn der Schlagmann den Ball richtig trifft, kann dieser über die Tribüne hinweg aus dem Stadion fliegen. Ein bestimmter Schlag kann durch die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j(x)=-0,0075x^2+1,2x+1} beschrieben werden, wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} die horizontale Entfernung zum Schlagmann und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j(x)} die Höhe des Balls, jeweils in Meter angibt.
a) Berechne j(0) und beschreibe, was dieser Wert im Anwendungskontext bedeutet.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rll} j(0) &=& -0.0075 \cdot 0^2 + 1.2 \cdot + 1 \\ &=& 1 \end{array} }
Der Schlagmann trifft den Baseball einen Meter über dem Boden.
b) Ein Spieler des gegnerischen Teams befindet sich 158 Meter vom Schlagmann entfernt in der Flugbahn des Balls. Wenn er hochspringt, erreichen seine Händen eine Höhe von 3,20 Metern. Berechne, ob der Spieler es schafft, den Ball aus der Luft zu fangen.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rll} j(158) &=& -0.0075 \cdot 158^2+ 1.2 \cdot 158 + 1 \\ &=& 3.37 \end{array} }
Auf Höhe des gegnerischen Spielers hat der Baseball noch eine Höhe von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3.37m.} Da der Spieler nur Bälle bis zu einer Höhe von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3.20m} erreichen kann, fängt er diesen Ball nicht.c) Berechne, wie weit der Baseball fliegt, wenn er von keinem gegnerischen Spieler aus der Luft gefangen wird.
Nullstellenberechnung:
Im ersten Schritt wird der Vorfaktor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x^2}
eliminiert.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} 0 &=& -0.0075 \cdot x^2 + 1.2 \cdot x + 1 & \mid :(-0.0075) \\ &=& x^2 - 160x - \frac{400}{3} \end{array} }
Im zweiten Schritt wird die pq-Formel angewendet, um die Nullstellen zu berechnen.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow p=-160, q= -\frac{400}{3} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} x_{1/2} &=& -\frac{-160}{2} \pm \sqrt{{\left( \frac{-160}{2} \right)}^2 -(-\frac{400}{3}} \\ &=& 80 \pm \sqrt{\frac{19600}{3}} \\ &=& 80 \pm 80.83 \\ \end{array} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow x_1 = 80+80.83 = 160.83 }
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = 80-80.83 = -0.83 }
Der Zeitpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2}
liegt zeitlich vor dem Schlag. Aus diesem Grund müssen wir nur Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1}
betrachten. Somit fliegt der Baseball Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 160.83}
Meter weit, bevor er auf dem Boden fällt.
d) Nach wieviel Metern erreicht der Baseball seine maximale Höhe? Welche Höhe erreicht er?
Umwandlung der Normalform in die Scheitelpunktform:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} j(x) &=& -0.0075 \cdot x^2 + 1.2 \cdot x +1 &\mid -0.0075 \, ausklammern \\ &=& -0.0075 (x^2-160x-\frac{400}{3}) &\mid +80^2 -80^2 \, quadratische \, Erg\ddot{a}nzung\\ &=& -0.0075 (x^2-160x + 80^2-80^2-\frac{400}{3}) &\mid 2. \, binomische \, Formel\\ &=& -0.0075 [(x-80)^2 -\frac{19600}{3}] &\mid ausmultiplizieren \\ &=& -0.0075 (x-80)^2 +49 \end{array} }
Der Scheitelpunkt liegt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S(80 \mid 49).}
Somit erreicht der Baseball nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 80}
Metern die maximale Höhe von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 49}
Metern.
e)** Berechne die horizontale Entfernung zum Schlagmann, in welcher der Baseball eine Höhe von 0,5 Metern hat.
Wir müssen für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j(x)=0.5}
die zugehörigen x-Werte berechnen. Dafür setzen wir Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0.5}
für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j(x)}
ein und bringen als erstes alle Summanden auf eine Seite.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} 0.5 &=& -0.0075 \cdot x^2 + 1.2 \cdot x + 1 \mid -0.5 \\ \Leftrightarrow 0&=&-0.0075 \cdot x^2 + 1.2 \cdot x +0.5 \end{array} }
Als nächstes eliminieren wir den Vorfaktor vor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x^2.}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} 0 &=& -0.0075 \cdot x^2 + 1.2 \cdot x +0.5 &\mid :(-0.0075) \\ &=& x^2 -160 \cdot x - \frac{200}{3} \end{array} }
Nun lösen wir die Gleichung mithilfe der pq-Formel nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x}
auf.
Es gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle p=-160, q= -\frac{200}{3}.}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rll} x_{1/2} &=& -\frac{-160}{2} \pm \sqrt{ \left( \frac{-160}{2} \right)^2 + \frac{200}{3}} \\ &=& 80 \pm \sqrt{\frac{19400}{3}}\\ &=& 80 \pm 80.42 \end{array} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow x_1 = 80+80.42 = 160.42 }
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = 80-80.42 = -0.42 }