Digitale Werkzeuge in der Schule/Fit für VERA-8/Terme: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 160: | Zeile 160: | ||
===== Aufgabe ===== | ===== Aufgabe ===== | ||
{{Box | 1= Aufgabe 2 | 2= Ordne dem Term eine ausmultiplizierte Zwischenrechnung und den fertigen Klammerterm zu. Z.B. xy | {{Box | 1= Aufgabe 2 | 2= Ordne dem Term eine ausmultiplizierte Zwischenrechnung und den fertigen Klammerterm zu. Z.B. xy <br \> | ||
<div class="zuordnungs-quiz"> | <div class="zuordnungs-quiz"> | ||
{| | {| | ||
Zeile 175: | Zeile 173: | ||
</div> | </div> | ||
| 3= Arbeitsmethode | Farbe={{Farbe|orange}} }} | |||
==== Weitere Aufgaben ==== | ==== Weitere Aufgaben ==== |
Version vom 18. November 2020, 10:55 Uhr
In diesem Lernpfadkapitel lernst du Grundlagen über Terme und binomische Formeln kennen. Kurzbeschreibung des Aufbaus.Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Inhaltsverzeichnis
1) Terme zusammenfassen
Einführung
Wie kann ich Terme zusammenfassen?
Terme erhalten unterschiedliche Rechenoperationen wie Addition, Subtraktion, Multiplikation und Division. Manche Teile von Termen kann man zusammenfassen, um so den Term zu vereinfachen. Beachte dabei:
Beim Zusammenfassen von Summen gilt:
Nur gleiche Variablen in der gleichen Potenz dürfen zusammengefasst werden.
Beispiele:
Hier konnten nur die beiden Teile mit xy zusammengefasst werden, da alle anderen Variablen unterschiedlich sind bzw. in einer anderen Potenz vorkommen.
Tipp: Es kann helfen die gleichen Potenzen und Variablen farblich zu markieren.
Beim Zusammenfassen von Produkten gilt:
Es können auch Teile mit unterschiedlichen Potenzen oder Variablen zusammengefasst werden.
Beispiel:
Beachte die Vorzeichen der Faktoren.
Beispiel:
Aufgabenteil
Fasse den folgenden Term zusammen:
5a+5 | ||
a+2 | 3a+1 | |
3a-4 |
}
2) Terme ausmultiplizieren und faktorisieren
Terme ausmultiplizieren
Das Ausmultiplizieren hat zum Ziel, eine Klammer aufzulösen. Um einen Faktor (im Bsp. 2) mit einer Klammer, in der eine Summe oder Differenz steht (im Bsp. 5 + 3), zu multiplizieren, muss der Faktor mit jedem Glied in der Klammer multipliziert werden:
Es spielt keine Rolle, ob der Faktor links oder rechts von der Klammer steht:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (5+3){\color{green}2} = 5 \cdot {\color{green}2} + 3\cdot {\color{green}2} = 10 + 6 = 16} .
Achte darauf, ob in der Klammer eine Summe oder Differenz steht, denn:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2(5{\color{red}-}3) = 2 \cdot 5 {\color{red}-} 2\cdot 3 = 10 {\color{red}-} 6 = 4} .
Die gleichen Rechenregeln gelten für Variablen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {\color{green}a}(b+c) = {\color{green}a}b + {\color{green}a}c} .
Das kann man sich auch anhand von Flächen mit den Seitenlängen a, b und c veranschaulichen:
Besonders aufpassen muss man bei Minusklammern, also wenn vor der Klammer ein negativer Faktor steht. Denn dann drehen sich die Vorzeichen von jedem Glied in der Klammer um:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {\color{red}-}a(b{\color{red}+}c) = {\color{red}-}ab {\color{red}-} ac} .
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {\color{red}-}a({\color{red}-}b{\color{red}+}c) = ab {\color{red}-} ac} .
Hierfür gilt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle + \cdot + }
ergibt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle - \cdot - }
ergibt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle + }
Zwei Summen (oder Differenzen) werden miteinander multipliziert, indem man jeden Summanden der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {\color{green}x} (3 + 2) = 3{\color{green}x} + 2{\color{green}x} = 5{\color{green}x}} .
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {\color{green}2}(3x - 1) = {\color{green}2} \cdot 3x - {\color{green}2} \cdot 1 = 6x - 2} .
.
Aufgabe
a) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -a(b-c) = }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -ab+ac }
b) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4(5a+4b) = }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 20a+16b }
c) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -8(a+2b) = }
d) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 10(5a+6b+3c) = }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 50a+60b+30c }
e) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (5a+10b)(\frac{1}{5}c+2d) = }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle ac+10ad+2bc+20bd }
f) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{2}(\frac{1}{2}a+\frac{1}{3}b) = }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{4}a+\frac{1}{6}b }
g) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -\frac{1}{4}(a+b) }
= Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -\frac{1}{4}a-\frac{1}{4}b }
h) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (\frac{1}{2}a+\frac{1}{2}b)(2c+4d) }
=
Terme faktorisieren
Beim Faktorisieren (auch genannt: Ausklammern) geht es genau umgekehrt wie beim Ausmultiplizieren darum, eine Klammer zu erstellen. Wie das funktioniert, erklärt dir Lehrer Schmidt in folgendem Video: [1]
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {\color{green}2}a+{\color{green}2}b = {\color{green}2}(a+b) }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {\color{green}4}x+{\color{green}4}y = {\color{green}4}(x+y) }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 16x+4y = {\color{green}4} \cdot 4x + {\color{green}4}y = {\color{green}4}(4x+y) }
Um zu überprüfen, ob du richtig faktorisiert hast, kannst du eine Probe durchführen, indem du deinen faktorisierten Term ausmultiplizierst und schaust, ob der Ursprungsterm herauskommt.
Aufgabe
Weitere Aufgaben
Welche Zahl muss man einsetzen, damit die Umformung stimmt?
a) 3() Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cdot (2 \cdot x + 7) = 6 \cdot x + 21 }
b) 15() Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cdot x + 35 = 5 \cdot (3 \cdot x + 7) }
c) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4 \cdot (-3 \cdot z + 2) = }
-12() Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cdot z + 8 }
d) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 9 \cdot y - 15 = 3 \cdot (3 \cdot y }
-5() Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle )}
e) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (-24 \cdot a + 42) \cdot \frac{1}{6} = }
-4() Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a + }
7()
In dieser Aufgabe geht es darum, das Gelernte möglichst schnell anzuwenden, denn du trittst gegen den Computergegner an 😉 wer gewinnt das Rennen?
3) Binomische Formeln
Einführung
Was sind die binomischen Formeln?
Die folgenden drei Umformungen bilden die sogenannten binomischen Formeln:
1. binomische Formel: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (a+b)^2 = a^2+2ab+b^2 }
2. binomische Formel: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (a-b)^2 = a^2-2ab+b^2 }
3. binomische Formel: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (a+b)(a-b) = a^2-b^2 }
Herleitung der binomischen Formeln
Bei der Herleitung der binomischen Formeln werden die Terme in den Klammern ausmultipliziert.
Versuche, die erste binomische Formel in deinem Heft rechnerisch herzuleiten.
Herleitung über Flächen von Quadraten
