a) Im Innenhof des Louvre-Museums in Paris befindet sich eine große Glaspyramide. Die quadratische Grundfläche liegt in einer Ebene, die durch die Ebenengleichung
beschrieben werden kann. Die Spitze liegt im Punkt
. Eine Längeneinheit
im Koordinatensystem entpricht
.
Welche Höhe hat die Pyramide in
?
Vorlage:Tipp versteckt
Die Höhe der Pyramide kann man bestimmen, indem man den Abstand zwischen der Spitze
und der Ebene
bestimmt.
Zuerst wird die Geradengleichung der Lotgeraden
zu
durch
aufgestellt. Wir nehmen den Ortsvektor von
als Stützvektor und den Normalenvektor von
als Richtungsvektor, also:
.
Wir bestimmen den Schnittpunkt von
mit
. Einsetzen von einem allgemeinen Punkt von
in
ergibt
, also
. Durch Einsetzen in die Geradengleichung
erhalten wir den Lotfußpunkt
. Dies ist gleichtzeitig der Mittelpunkt der Grundfläche der Glaspyramide.
Der Abstand zwischen S und L beträgt

wegen

. Die Pyramide hat also eine Höhe von
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 24m}
.
Die Pyramide hat eine Höhe von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 24m }
.
b) Es befindet sich auch eine invertierte Glaspyramide im Innenhof das Louvre. Das bedeutet, ihre quadratische Grundfläche liegt in der gleichen Ebene wie die Grundfläche der großen Glaspyramide, ihre Spitze ist aber unterhalb des Innenhofs. Man kann sie in einem Raum unterhalb des Innenhofs besichtigen. Die Länge der Kante von der Spitze bis zu einer Ecken der Grundfläche beträgt jeweils Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 10m }
. Die Grundfläche hat Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 12m }
lange Diagonalen, die sich im Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (38 | 1 | -35) }
schneiden. In welchem Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S_2}
liegt die Spitze der umgedrehten Pyramide?
Vorlage:Tipp versteckt
Vorlage:Tipp versteckt
Die Höhe der Pyramide kann man mit dem Satz des Pythagoras und den Längenangaben für die Diagonale der Grundfläche und die Kanten berechnen: (Zeichnung einfügen)
Es ist
, also beträgt die Höhe der invertierten Pyramide Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 8m }
, was Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2LE }
im Koordinatensystem entspricht.
Die Spitze der umgedrehten Pyramide liegt also in einem Punkt, der einen Abstand von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2LE}
zur Pyramidengrundfläche hat. Es gibt genau zwei solche Punkte, die Spitze einer "normalen" Pyramide und die Spitze der invertierten Pyramide.
Damit man die Spitze der invertierten Pyramide erhält, geht man vom Mittelpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M (38 | 1 | -35)}
der Grundfläche aus Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2LE}
entlang der Geraden, die orthogonal zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E}
ist, und zwar in die andere Richtung als in Aufgabenteil a). Das heißt, man geht
in die entgegengesetzte Richung des Normalenvekotrs von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E}
.
Es ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle |vec{n}|=|\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}|=\sqrt{2^2+1^2+2^2}=3, also ist vec{n_0}=\frac{1}{3}\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} }
.
Nun können wir bestimmen, in welchem Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S_2}
die Spitze liegt:
Es ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 38 \\ 1 \\ -35 \end{pmatrix}\cdot \frac{1}{3}\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}\begin{pmatrix} 36 \frac{2}{3} \\ \frac{1}{3} \\ -36 \frac{1}{3} \end{pmatrix}}
, also erhält man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S_2=(36 \frac{2}{3}|\frac{1}{3}|-36 \frac{1}{3})}
.
isch den Mittelpunkt der Ebene geht, damit die Spitze der Pyramide mittig "über" bzw. "unter" der Grundfläche liegt.
Diese Gerade entspricht der Lotgeraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g_2}
zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E}
durch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S_2}
. Der bereits bekante Mittelpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (38 | 1 | -35) }
ist der Lotfußpunkt auf Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E}
.
Die Lotgerade g2 ist gegeben durch ...
Normalenvektor...