Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 69: | Zeile 69: | ||
|Arbeitsmethode}} | |Arbeitsmethode}} | ||
{{Box | Aufgabe <Nummer>: Schatten eines Sonnensegels | | <nowiki>{{Box | Aufgabe <Nummer>: Schatten eines Sonnensegels | | ||
Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math> A = \left( \begin{matrix} 9\\ -5\\ 7 \end{matrix} \right), B= \left( \begin{matrix} 6\\ -5\\ 7 \end{matrix} \right)</math> und <math> C = \left( \begin{matrix} 7\\ -10\\ 11 \end{matrix} \right) </math>. Die Terrasse wird modelliert durch die <math>x_1- x_2</math>-Ebene. Die Sonne scheint aus Richtung <math> S = \left( \begin{matrix} -2\\ -2\\ -10 \end{matrix} \right) </math>. In welchem Bereich hat Frau Meier nun Schatten? | Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind </nowiki><math> A = \left( \begin{matrix} 9\\ -5\\ 7 \end{matrix} \right), B= \left( \begin{matrix} 6\\ -5\\ 7 \end{matrix} \right)</math> und <math> C = \left( \begin{matrix} 7\\ -10\\ 11 \end{matrix} \right) </math>. Die Terrasse wird modelliert durch die <math>x_1- x_2</math>-Ebene. Die Sonne scheint aus Richtung <math> S = \left( \begin{matrix} -2\\ -2\\ -10 \end{matrix} \right) </math>. In welchem Bereich hat Frau Meier nun Schatten? | ||
{{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | {{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1= Der Schatten liegt auf der <math> x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x\\ y\\ 0 \end{matrix} \right) </math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1= Der Schatten liegt auf der <math> x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x\\ y\\ 0 \end{matrix} \right) </math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1= '''1. Schritt:''' | {{Lösung versteckt|1= '''1. Schritt:''' |2= Lösung anzeigen| 3= Lösung verbergen}} | ||
Hervorhebung1}} | |||
{{Box| Aufgabe: Bestimme den Parameter | | {{Box| Aufgabe: Bestimme den Parameter | |
Version vom 7. Mai 2021, 07:56 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
{{Box | Aufgabe <Nummer>: Schatten eines Sonnensegels | Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind und . Die Terrasse wird modelliert durch die -Ebene. Die Sonne scheint aus Richtung . In welchem Bereich hat Frau Meier nun Schatten?
Hervorhebung1}}
⭐Berechnung des Winkels zwischen Gerade und Ebene
{{Box | Aufgabe <Nummer>: Gerade gesucht |
Eine Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} soll die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1-x_2-Ebene } in einem Winkel von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 45 ^\circ} schneiden. Über die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} ist nur bekannt, dass sie im Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle P (1|2|3) } beginnt und sie in Richtung des Vektors Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{x}=\begin{pmatrix} 3\\ 6\\ z \end{pmatrix}} verläuft. Stelle die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} auf.
Lagebeziehung Ebene-Ebene
⭐Berechnung des Winkels zwischen Ebene und Ebene