Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Winkel und Skalarprodukt (Vektoren bzw. Geraden): Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 388: | Zeile 388: | ||
<math> \cos(\alpha) = \frac {12-15+20}{\sqrt{17} \cdot \sqrt{161}} = \frac{17}{\sqrt{17} \cdot \sqrt{161}} = \sqrt{\frac{17}{161}}</math> | <math> \cos(\alpha) = \frac {12-15+20}{\sqrt{17} \cdot \sqrt{161}} = \frac{17}{\sqrt{17} \cdot \sqrt{161}} = \sqrt{\frac{17}{161}}</math> | ||
<math> \alpha = \arccos \left( | <math> \alpha = \arccos \left( {\frac{17}{\sqrt{161}} \right) \approx 71{,}04^\circ </math> | ||
<math> \beta = 90^\circ - \alpha = 18{,}96^\circ </math> | <math> \beta = 90^\circ - \alpha = 18{,}96^\circ </math> |
Version vom 9. Mai 2021, 11:55 Uhr
Skalarprodukt
In diesem Abschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um im weiteren Verlauf den Winkel zwischen zwei Vektoren und zwei Geraden berechnen zu können.
Einführung
Aufgaben
Winkel
Im Folgenden schauen wir uns den Umgang mit Winkeln zwischen Vektoren und Geraden an.
Einführung
Aufgaben
Winkel zwischen zwei Vektoren
Winkel zwischen zwei Geraden
In diesem Abschnitt lernst du, wie man den Schnittwinkel zweier Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.
Aufgabe 11: Innenwinkel eines Dreiecks
In einem kartesischen Koordinatensystem sind die Punkte A(-3|2|-1), B(-1|-1|-3) und S(3|7|-1) sowie die Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g=AB } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h \colon \vec{x} = \begin{pmatrix} 7 \\ 4 \\ 6 \end{pmatrix} + r \cdot \begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix} } gegeben.
Bestimme die Größe der Innenwinkel des Dreiecks ABS.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{AB}, \vec{AS} } und ihre Länge bestimmen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{AB} = \vec{B} - \vec{A} = \begin{pmatrix} -1 \\ -1 \\ -3 \end{pmatrix} - \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{AS} = \vec{S} - \vec{A} = \begin{pmatrix} 3 \\ 7 \\ -11 \end{pmatrix} - \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ -10 \end{pmatrix} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle |\vec{AB}| = \sqrt{2^2+(-3)^2+(-2)^2} = \sqrt{17} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle |\vec{AS}| = \sqrt{6^2+5^2+(-10)^2} = \sqrt{161} }
Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha } zwischen den beiden Vektoren bestimmen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(\alpha) = \frac {\vec{AB} \ast \vec{AS}}{|\vec{AB}| \cdot |\vec{AS}|} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(\alpha) = \frac {12-15+20}{\sqrt{17} \cdot \sqrt{161}} = \frac{17}{\sqrt{17} \cdot \sqrt{161}} = \sqrt{\frac{17}{161}}}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha = \arccos \left( {\frac{17}{\sqrt{161}} \right) \approx 71{,}04^\circ }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta = 90^\circ - \alpha = 18{,}96^\circ }
Die Innenwinkel des Dreiecks Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle ABS} sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha = 71{,}04^\circ, \beta = 18{,}96^\circ \text{ und } \gamma = 90^\circ.}