Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lineare Gleichungssysteme: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 113: | Zeile 113: | ||
Existiert kein Widerspruch und die Anzahl der Variablen ist gleich der Anzahl der nicht äquivalenten Gleichungen, so besitzt das lineare Gleichungssystem '''genau eine''' Lösung. | Existiert kein Widerspruch und die Anzahl der Variablen ist gleich der Anzahl der nicht äquivalenten Gleichungen, so besitzt das lineare Gleichungssystem '''genau eine''' Lösung. | ||
Außerdem kann man die Lösbarkeit eines linearen Gleichungssystems an der Anzahl der Gleichungen und Variablen erkennen. Weiteres dazu erfährst du im Abschnitt [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lineare Gleichungssysteme#Unter- und .C3.BCberbestimmte Gleichungssysteme | Unter- und Überbestimmte Gleichungssysteme]] | Außerdem kann man die Lösbarkeit eines linearen Gleichungssystems an der Anzahl der Gleichungen und Variablen erkennen. Weiteres dazu erfährst du im Abschnitt [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lineare Gleichungssysteme#Unter- und .C3.BCberbestimmte Gleichungssysteme | Unter- und Überbestimmte Gleichungssysteme.]] | ||
| 3= Merksatz}} | | 3= Merksatz}} | ||
Version vom 1. Juni 2021, 20:36 Uhr
Wiederholung: Verschiedene Verfahren zum Lösen linearer Gleichungssysteme
Lineare Gleichungssysteme mit dem Gauß-Algorithmus lösen
Lösbarkeit linearer Gleichungssysteme
Unter- und überbestimmte Gleichungssysteme
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left\vert\begin{alignat}{7} x &&\; + \;&& y &&\; = \;&& 6 \\ 2x &&\; - \;&& y &&\; = \;&& 1\\ x &&\; + \;&& 3y &&\; = \;&& 0 \end{alignat}\right\vert}
Multiplikation der dritten Gleichung mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2 } und anschließende Subtraktion der zweiten Gleichung ergibt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left\vert\begin{alignat}{7} x &&\; + \;&& y &&\; = \;&& 6 \\ 2x &&\; - \;&& y &&\; = \;&& 1\\ 0 &&\; + \;&& 7y &&\; = \;&& -1 \end{alignat}\right\vert}
Aus der dritten Gleichung folgt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y = \frac{(-1)}{7} = - \frac{1}{7} }
Einsetzen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y } in die zweite Gleichung ergibt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{align} & & 2x - (- \frac{1}{7}) &= 1 \\ \Leftrightarrow & & 2x &= \frac{6}{7} \\ \Leftrightarrow & & x &= \frac{3}{7} \end{align}}
Einsetzen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y } in die erste Gleichung ergibt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{align} & & \frac{3}{7}+ (- \frac{1}{7}) &= 6 \\ \Leftrightarrow & & \frac{2}{7} &= 6 \quad \Rightarrow \text{Widerspruch} \end{align}}
An dieser Stelle entsteht ein Widerspruch. Die letzte Gleichung besitzt keine Gültigkeit. Das Gleichungssystem besitzt daher keine Lösung.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left\vert\begin{alignat}{7} x &&\; + \;&& 3y &&\; + \;&& z &&\; = \;&& 3 \\ x &&\; - \;&& 3y &&\; + \;&& z &&\; = \;&& 5 \end{alignat}\right\vert}
Subtraktion der ersten von der zweiten Gleichung ergibt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left\vert\begin{alignat}{7} x &&\; + \;&& 3y &&\; + \;&& z &&\; = \;&& 3 \\ 0 &&\; - \;&& 6y &&\; + \;&& 0 &&\; = \;&& 2 \end{alignat}\right\vert}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow y = \frac{2}{(-6)} = -\frac{2}{6} = -\frac{1}{3} }
Einsetzen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y } in die erste Gleichung ergibt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{align} && x + 3 \cdot -\frac{1}{3} + z &= 3 \\ \Leftrightarrow & & x - 1 + z &= 3 \\ \Leftrightarrow & & x + z &= 4 \\ \Leftrightarrow & & z &= 4 - x \\ \end{align}}
Für dieses Gleichungssystem kann keine eindeutige Lösung bestimmt werden. Für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y } wurde eine eindeutige Lösung bestimmt, Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z } können nur in Abhängigkeit der jeweils anderen Variable bestimmt werden. So wurde hier die Variable Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z } in Abhängigkeit von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } bestimmt. Für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } kann also eine beliebige reelle Zahl eingesetzt werden, daher wird für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } ein Parameter eingesetzt: Sei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t = x } . Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z } berechnet sich dann durch den Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t } . Das Gleichungssystem hat also unendlich viele Lösungen. Genauso wäre es möglich, die Variable Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } in Abhängigkeit von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z } zu bestimmen, also für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z } einen Parameter zu setzen.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left\vert\begin{alignat}{7} 2x &&\; + \;&& 2y &&\; = \;&& 12 \\ 4x &&\; - \;&& 2y &&\; = \;&& 8\\ x &&\; + \;&& 4y &&\; = \;&& 4 \end{alignat}\right\vert}
Multiplikation der dritten Gleichung mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4 } und anschließende Subtraktion der zweiten Gleichung ergibt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left\vert\begin{alignat}{7} 2x &&\; + \;&& 2y &&\; = \;&& 12 \\ 4x &&\; - \;&& 2y &&\; = \;&& 8\\ 0 &&\; + \;&& 18y &&\; = \;&& 8 \end{alignat}\right\vert}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow y = \frac{8}{18} = \frac{4}{9} }
Einsetzen von in die zweite Gleichung ergibt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{align} && 4x - 2 \cdot \frac{4}{9} &= 8 \\ \Leftrightarrow & & 4x - \frac{8}{9} &= 8 \\ \Leftrightarrow & & 4x &= \frac{80}{9} \\ \Leftrightarrow & & x &= \frac{20}{9} \\ \end{align}}
Einsetzen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y } in die erste Gleichung ergibt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2 \cdot \frac{20}{9} + 2 \cdot \frac{8}{18} = \frac{16}{3} \neq 12 }
Hier entsteht also ein Widerspruch. Das Einsetzen von und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y } in die erste Gleichung liefert ein anderes Ergebnis als das, was auf der rechten Seite der Gleichung steht. Daher gilt dieses Gleichungssystem als nicht lösbar, es besitzt also keine Lösung.
Interpretation der Lösung eines Linearen Gleichungssystems