Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in rechtwinkligen Dreiecken: Unterschied zwischen den Versionen
K (Beispiel ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 54: | Zeile 54: | ||
Du kannst b auch mit dem Satz des Pythagoras bestimmen:<br> | Du kannst b auch mit dem Satz des Pythagoras bestimmen:<br> | ||
a² + b² = c² (denn a und b sind die Katheten, c ist die Hypotenuse im rechtwinkligen Dreieck)<br> | a² + b² = c² (denn a und b sind die Katheten, c ist die Hypotenuse im rechtwinkligen Dreieck)<br> | ||
b = <math>\sqrt{c²-a²}</math><br> | b = <math>\sqrt{\text{c²-a²}}</math><br> | ||
& | = <math>\sqrt{\text{6,8²-5,6²}}</math><br> | ||
& | <math>\approx</math> 3,9 (cm) Der Wert ist ungenauer, da du mit dem gerundeten Wert von a weitergerechnet hast.<br> | ||
Du kannst β auch kürzer bestimmen mit <br> | Du kannst β auch kürzer bestimmen mit <br> |
Version vom 12. Januar 2021, 15:06 Uhr
Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken
Du kennst schon eine Möglichkeiten, eine fehlende Seitenlänge in einem rechtwinkligen Dreiecken zu berechnen, wenn zwei Seiten gegeben sind:
Wenn nun in einem rechtwinkligen Dreieck eine Seite und ein Winkel gegeben sind, kannst du mithilfe von Sinus, Kosinus und Tangens die Längen der anderen Seiten berechnen.
Wo kannst du das anwenden? Warum sollst du das lernen?
Es hilft z.B. bei Vermessungen:
Wir haben in Klasse 7 die Höhe des Stadtlohner Kirchturms mithilfe einer Zeichnung bestimmt, erinnerst du dich? Nun haben wir die Möglichkeit, die Höhe auf eine andere Art zu berechnen.
Wir messen den Blickwinkel, unter dem wir die Spitze des Kirchturms sehen und die Entfernung zur Kirche. Welche Größen des rechtwinkligen Dreiecks sind also gegeben, welche Größe ist gesucht?
Im rechtwinkligen Dreieck ist der Winkel = 55° gegeben, der Winkel ist der rechte Winkel. Außerdem ist die Länge der Seite c = 50 m gegeben. Das ist die Ankathete zu .
Gesucht ist die Länge der Seite b. Dies ist die Gegenkathete zu
.
Bestimme nun die Höhe des Kirchturms!
tan = Fehler beim Parsen (Unbekannte Funktion „\tfrat“): {\displaystyle \tfrat{\text{Gegenkathete}}{\text{{Ankathete}}}
Fehler beim Parsen (Unbekannte Funktion „\tfrat“): {\displaystyle \tfrat{b}{c}}
= Fehler beim Parsen (Unbekannte Funktion „\tfrat“): {\displaystyle \tfrat{h}{50}}
. Stelle nun diese Gleichung nach h um.
tan (56°) = Fehler beim Parsen (Unbekannte Funktion „\tfrat“): {\displaystyle \tfrat{h}{50}}
|∙ 50
tan (56°) ∙ 50 = h
74,1 (m) h
Beispiele:
Beispiel 1: eine Seite und ein Winkel sind gegeben
geg: rechtwinkliges Dreieck ( = 90°); c = 6,8 cm; = 56°
ges: a; b;
Bestimme a:
sin α = |∙c
a = sin α ∙ c
a = sin (56°)∙6,8
a 5,6 (cm)
Bestimme b:
cos α = |∙c
b = cos α ∙ c
b = cos (56°)∙6,8
b 3,8 (cm)
Bestimme β:
Winkelsummensatz für Dreiecke: α + β + γ = 180°
β = 180° - α - γ
= 180° - 56° - 90°
= 34°
Anmerkungen:
Du kannst b auch mit dem Satz des Pythagoras bestimmen:
a² + b² = c² (denn a und b sind die Katheten, c ist die Hypotenuse im rechtwinkligen Dreieck)
b =
=
3,9 (cm) Der Wert ist ungenauer, da du mit dem gerundeten Wert von a weitergerechnet hast.
Du kannst β auch kürzer bestimmen mit
sin α = |∙c
a = sin α ∙ c |:sin α
c =
Materialsammlung: Übungen auf der Seite Aufgabenfuchs