Flugerlaubnis erteilen?
Ein wichtiger Bestandteil der Flugsicherung sind die Fluglotsen der "Deutschen Flugsicherung" (DFS). Sie koordinieren und überwachen jährlich Millionen Flüge im deutschen Luftraum. Am heutigen Tag wollen zwei Flugzeuge starten. Hierzu gehört das Flugzeug der Fluglinie Aer. Es startet bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix}}
und befindet sich nach 5sek auf Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 510 \\ 410 \\ 350 \end{pmatrix}}
. Ebenfalls möchte das Flugzeug der Fluglinie Amadeus in die Luft. Dies startet in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 5 \\ 10 \\ 0 \end{pmatrix}}
. Pro Sekunde legt es eine Strecke von 175,49m zurück und besitzt einen Richtungsvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 120,2 \\ 96,4 \\ z \end{pmatrix}}
.
Es kam zu einem riesigen Stromausfall und der Fluglotse ist sich unsicher. Hilf ihm die Antworten auf folgende Fragen zu finden:
a) Wie lauten die Geradengleichungen der einzelen Flugzeuge?
b) Wie schnell (in km/h) fliegen die einzelnen Flugzeuge?
c) Können alle Flugzeuge starten, ohne dass es zu einer Kollision kommt?
Zu Aer: Setze alle gegebenen Daten in eine allgemeine Parameterdarstellung ein und forme um.
Zu Amadeus: Um den Richtungsvektor zu berechnen, benötigst du die Forme zur Berechnung der Länge eines Vektoren:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L=\sqrt[2]{x{2}+y^{2}+z^{2}}}
.
Geschwindigkeit kann man in verschiedene Einheiten angeben, z.B.: km/h, m/s etc.. Nachdem du die Länge der Strecke nach einer Sekunde berechnet hast, musst du dies von m/s zu km/h umwandeln.
Nur weil sich zwei Geraden schneiden heißt es noch nicht direkt, dass eine Kollision vorherrscht.
Flugzeug Aer:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f_3: \vec{x} = \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 100 \\ 80 \\ 70 \end{pmatrix}, t \in \mathbb{R} }
Dies erhalten wir, indem wir folgendes berechnen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 510 \\ 410 \\ 350 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix} + 5\cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}, t \in \mathbb{R} }
. Dies schreiben wir in ein Gleichugssystem um und formen es zu x,y,z um:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 510=10+5*x }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 410=10+5*y }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 350= 0+5*z }
Flugzeug Amadeus:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f_1: \vec{x} = \begin{pmatrix} 5 \\ 10 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 120,2\\ 96,4 \\ 84\end{pmatrix}, t \in \mathbb{R} }
Dies erhalten wir wie folgt:
Wir kennen den Richtungsvektor:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 120,2\\ 96,4 \\ 84\end{pmatrix}}
. Nun müssen wir z berechnen. Im Text steht, dass das Flugzeug pro Sekunde eine Länge von 175,49m fliegt. Das bedeutet, dass der Richtungsvektor eine Länge von 175,49 beträgt. Dies können wir mit der Formel der Länge eines Vektor berechnen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 175,49=\sqrt[2]{120,2^{2}+96,4^{2}+z^{2}}}
Indem wir beide Seiten zum Quadart nehemn, entfällt die Wurzel und es folgt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 175,49^{2}=120,2^{2}+96,4^{2}+z^{2}}
Wir formen zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z^{2}}
um und ziehen dann die Wurzel. Wir erhalten 83,998 und runden auf 84.
Wobei t für die Zeit in Sekunden steht.
Wir berechnen die Geschwindigkeit, indem wir die Länge des Richtungsvektors berechnen. Dies erfolgt mit der Formel:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L=\sqrt[2]{x{2}+y^{2}+z^{2}}}
.
Fugzeug Aer:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L=\sqrt[2]{100{2}+80^{2}+70^{2}}}
.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L=145,95}}
.
Wir erhalten also eine Geschwindigkeit von 145,95 m/s. Es gilt: 3,6km/h=1m/s.
Umgerechnet in km/h sind das also:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 145,95*3,6= 525,42}
525,42km/h.
Flugzeug Amadeus:
Das Flugzeug Amadeus legt laut Text nach einer Sekunde eine Strecke von 175,49m zurück. Damit hat es eine Geschwindigkeit von 175,49m/s.Umgerechnet in km/h sind das also:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 175,49*3,6= 631,76}
631,76km/h.
Flugzeug Aer und Amadeus:
Sie schneiden sich für
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix} + 30 \cdot \begin{pmatrix} 100 \\ 80 \\ 70 \end{pmatrix}= \begin{pmatrix} 5 \\ 10 \\ 0 \end{pmatrix} + 25 \cdot \begin{pmatrix} 120,2\\ 96,4 \\ 84\end{pmatrix}}
. Dies erhalten wir, indem wir beide Funktionen gleichsetzen und in ein Gleichungssystem umformen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 10+t*100=5+s*120,2 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 10+t*80=10+s*96,4 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0+t*70=0+s*84 }
Da es jedoch nicht der gleiche Zeitpunkt ist, kommt es zu keiner Kollision.