|
|
Zeile 44: |
Zeile 44: |
|
| |
|
| Ebene in Koordinatenform: <math>E:2x_1+6x_2-4x_3=-32 </math> | | Ebene in Koordinatenform: <math>E:2x_1+6x_2-4x_3=-32 </math> |
| Ebene in Normalenform: <math>F:\vec{x}=\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}+s*\begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix </math> | | Ebene in Normalenform: <math>F<math>F:\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}*(\vec{x}-\begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix )=0 </math> |
| Die x_1,x_2 Ebene:<math>G: \vec{x}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}+t*\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+s*\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} </math> | | Die x_1,x_2 Ebene:<math>G: \vec{x}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}+t*\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+s*\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} </math> |
|
| |
|
| {{Lösung versteckt|1= | | {{Lösung versteckt|1= |
| | Du kannst auch immer die Hesse´sche Normalenform zur Berechnung benutzten. Im Folgenden wurden die Abstände mit dem Lotfußpunktverfahren berechnet. |
|
| |
|
| #Abstand von <math>E:2x_1+6x_2-4x_3=-32 </math> und <math>P(3|4|-2)</math>: | | # Abstand von <math>E:2x_1+6x_2-4x_3=-32 </math> und <math>P(3|4|-2)</math>: |
| Dies geht am schnellsten mit der HNF. Wenn du dir dabei noch unsicher bist, schau dir das nächste Kapitel an.
| |
| | |
| | |
| ## Die Gleichung für die zu <math>E:2x_1+6x_2-4x_3=1 </math> orthogonale Gerade <math>g</math> (also die Lotgerade) durch <math>P(3|4|-2)</math> aufstellen: | | ## Die Gleichung für die zu <math>E:2x_1+6x_2-4x_3=1 </math> orthogonale Gerade <math>g</math> (also die Lotgerade) durch <math>P(3|4|-2)</math> aufstellen: |
| <math>l:\vec{x}=\vec{p}+t*\vec{n}=\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}+t*\begin{pmatrix} 2 \\ 6 \\ -4 \end{pmatrix} </math>. | | <math>l:\vec{x}=\vec{p}+t*\vec{n}=\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}+t*\begin{pmatrix} 2 \\ 6 \\ -4 \end{pmatrix} </math>. |
| ##Den Lotfußpunkt <math>A</math> bestimmen: | | ## Den Lotfußpunkt <math>A</math> bestimmen: |
| <math>E:2(3+2t)+6(4+6t)-4(-2-4t)=32 | | <math>E:2(3+2t)+6(4+6t)-4(-2-4t)=32 |
| \Rightarrow t=-1,25 </math> | | \Rightarrow t=-1,25 </math> |
| <math>t</math> in <math>l</math> einsetzten: <math>l:\vec{x}=\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}-1,25*\begin{pmatrix} 2 \\ 6 \\ -4 \end{pmatrix}=\begin{pmatrix} 0,5 \\ -3,5 \\ 3 \end{pmatrix}</math> | | <math>t</math> in <math>l</math> einsetzten: <math>l:\vec{x}=\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}-1,25*\begin{pmatrix} 2 \\ 6 \\ -4 \end{pmatrix}=\begin{pmatrix} 0,5 \\ -3,5 \\ 3 \end{pmatrix}</math> |
| Der Lotfußpunkt <math>A</math> ist <math>A(0,5|-3,5|3)</math>. | | Der Lotfußpunkt <math>A</math> ist <math>A(0,5|-3,5|3)</math>. |
| ##Den Abstand zwischen den Punkten <math>P</math> und <math>A</math> bestimmen: | | ## Den Abstand zwischen den Punkten <math>P</math> und <math>A</math> bestimmen: |
| <math>d(P,A)=|\vec{P,A}|=\sqrt((0,5-3)^2+(-3,5-4)^2+(3-(-2))^2)\approx 9,354 </math> | | <math>d(P,A)=|\vec{P,A}|=\sqrt((0,5-3)^2+(-3,5-4)^2+(3-(-2))^2)\approx 9,354 </math> |
|
| |
|
| | | # Abstand von <math>F:\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}*(\vec{x}-\begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix )=0 </math> und <math>P(3|4|-2)</math>: |
| | | ## <math>F</math> in Koordinatenform umschreiben: |
| | | <math>F:\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}*(\vec{x}-\begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix )=0 |
| | | \Leftrightarrow F: x_1+x_2+2x_3=10 </math> |
| # Den Schnittpunkt <math>L</math> von der Lotgeraden <math>g</math> und der Ebene <math>E</math> bestimmen. <math>L</math> ist der Lotfußpunkt. | | Wenn du hierbei noch Probleme hast, dann schau dir doch nochmal [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]] an. |
| # Den Abstand zwischen den Punkten <math>P</math> und <math>L</math> bestimmen, indem man den Betrag des Vektors <math>\vec{PL} </math> berechnet. | | ## Zu <math>F</math> senkrechte Gerade <math>m</math> durch <math>P</math> aufstellen: |
| | | <math>m:\vec{x}=\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}+s*\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}</math> |
| | | ## Koordinaten der Geradengleichung <math>m</math> in <math>F</math> einsetzten: |
| | <math> F: (3+s)+(4+s)+2(-2+2s)=10 \Leftrightarrow s=\frac{7}{6}</math> |
| | <math>m:\vec{x}=\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}+\frac{7}{6}*\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}=begin{pmatrix} \frac{25}{6} \\ \frac{31}{6} \\ \frac{1}{3} \end{pmatrix}</math> |
| | Der Lotfußpunkt <math>B</math> ist <math>B(\frac{25}{6}|\frac{31}{6}|\frac{1}{3})</math>. |
| | ## Den Abstand zwischen den Punkten <math>P</math> und <math>B</math> bestimmen: |
| | <math>d(P,B)=|\vec{P,B}|=\sqrt((\frac{25}{6}-3)^2+(\frac{31}{6}-4)^2+(\frac{1}{3}-(-2))^2)\approx 2,858 </math> |
|
| |
|
|
| |
|
Info
worum es hier geht
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
- Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!
Motivation?
- ganz am Anfang, zur Motivation: 3 Situationen, zuordnen lassen, welche Punkt-Ebene, Punkt-Gerade usw. ist (mit Learning App), mit Bild
Abstand eines Punktes von einer Ebene
Das Lotfußpunktverfahren
Aufgabe 1⭐: Überblick: Abstand Punkt Ebene
Bei dieser Aufgabe kannst du einen Überblick über die Bestimmung des Abstandes zwischen einem Punkt und einer Ebene mit dem Lotfußpunktverfahren bekommen. Es geht auch um wichtige Begriffe in diesem Zusammenhang.
Fülle die Lücken mit den richtigen Wörtern. Sie werden dir angezeigt, sobald du auf eine Lücke klickst.
Wenn du fertig bist, klicke auf den Haken unten rechts.
Die Abbildung kann dir helfen.
Merke: Abstand eines Punktes P zu einer Ebene E - Lotfußpunktverfahren
Aufgabe 1: xyz
Berechne die Abstände der verschiedenen Ebenen
zum Punkt
. Ordne dann den Ebenen den jeweiligen Abstand
zu.
Ebene in Koordinatenform:
Ebene in Normalenform: Fehler beim Parsen (Unbekannte Funktion „\begin{pmatrix}“): {\displaystyle F<math>F:\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}*(\vec{x}-\begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix )=0 }
Die x_1,x_2 Ebene:
Du kannst auch immer die Hesse´sche Normalenform zur Berechnung benutzten. Im Folgenden wurden die Abstände mit dem Lotfußpunktverfahren berechnet.
- Abstand von
und
:
- Die Gleichung für die zu
orthogonale Gerade
(also die Lotgerade) durch
aufstellen:
.
- Den Lotfußpunkt
bestimmen:
in
einsetzten:
Der Lotfußpunkt
ist
.
- Den Abstand zwischen den Punkten
und
bestimmen:
- Abstand von Fehler beim Parsen (Unbekannte Funktion „\begin{pmatrix}“): {\displaystyle F:\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}*(\vec{x}-\begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix )=0 }
und
:
in Koordinatenform umschreiben:
Fehler beim Parsen (Unbekannte Funktion „\begin{pmatrix}“): {\displaystyle F:\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}*(\vec{x}-\begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix )=0 \Leftrightarrow F: x_1+x_2+2x_3=10 }
Wenn du hierbei noch Probleme hast, dann schau dir doch nochmal Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum an.
- Zu
senkrechte Gerade
durch
aufstellen:
- Koordinaten der Geradengleichung
in
einsetzten:
Fehler beim Parsen (Syntaxfehler): {\displaystyle m:\vec{x}=\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}+\frac{7}{6}*\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}=begin{pmatrix} \frac{25}{6} \\ \frac{31}{6} \\ \frac{1}{3} \end{pmatrix}}
Der Lotfußpunkt
ist
.
- Den Abstand zwischen den Punkten
und
bestimmen:

Arbeitsmethode
Weitere Aufgaben:
- stumpf das Verfahren anwenden. Lösungsweg anzeigen lassen und Tipps (Aufgabe zum Wiederholen/Vertiefen/Üben)
- Janne: man hat Ebene und bestimmten Abstand. Jetzt Punkt bestimmen, der diesen Abstand hat (wie Pyramidenaufgabe)
- Janne: Modellierungsaufgabe (zb aus Diagnosetest oder woanders her)
Aufgabe 2: Glaspyramide
a) Im Innenhof des Louvre-Museums in Paris befindet sich eine große Glaspyramide. Die quadratische Grundfläche liegt in einer Ebene, die durch die Ebenengleichung
beschrieben werden kann. Die Spitze liegt im Punkt
. Eine Längeneinheit
im Koordinatensystem entpricht
.
Welche Höhe hat die Pyramide in
?
Text zum Verstecken
Die Höhe der Pyramide kann man bestimmen, indem man den Abstand zwischen der Spitze
und der Ebene
bestimmt.
Zuerst wird die Geradengleichung der Lotgeraden
zu
durch
aufgestellt. Wir nehmen den Ortsvektor von
als Stützvektor und den Normalenvektor von
als Richtungsvektor, also:
.
Wir bestimmen den Schnittpunkt von
mit
. Einsetzen von einem allgemeinen Punkt von
in
ergibt
, also
. Durch Einsetzen in die Geradengleichung
erhalten wir den Lotfußpunkt
. Dies ist gleichtzeitig der Mittelpunkt der Grundfläche der Glaspyramide.
Der Abstand zwischen S und L beträgt

wegen

. Die Pyramide hat also eine Höhe von

.
Die Pyramide hat eine Höhe von

.
b) An einer anderen Stelle im Innenhof des Louvre befindet sich eine invertierte Glaspyramide. Das bedeutet, ihre quadratische Grundfläche liegt in der gleichen Ebene wie die Grundfläche der großen Glaspyramide, ihre Spitze ist aber unterhalb des Innenhofs. Man kann sie in einem Raum unterhalb des Innenhofs besichtigen. Die Länge der Kante von der Spitze bis zu einer Ecken der Grundfläche beträgt jeweils
. Die Grundfläche hat
lange Diagonalen, die sich im Punkt
schneiden. In welchem Punkt
liegt die Spitze der umgedrehten Pyramide?
Zeichne eine Skizze, in der du alle bekannten Längenangaben und Punkte einträgst. Was musst du wissen, um die Position der Spitze herauszufinden?
Wenn du die Höhe der Pyramide kennst, weißt du, welche Abstand die Spitze von der Grundfläche hat. Du kennst auch schon den Mittelpunkt der Pyramiden und kannst entlang des Normalenvektors von
zur Spitze gelangen.
Du kannst die Höhe der Pyramide mithilfe des Satzes von Pythagoras und der Längenangaben berechnen.
Die Höhe der Pyramide kann man mit dem Satz des Pythagoras und den Längenangaben für die Diagonale der Grundfläche und die Kanten berechnen:
Es ist
, also beträgt die Höhe der invertierten Pyramide
, was
im Koordinatensystem entspricht.
Die Spitze der umgedrehten Pyramide liegt also in einem Punkt, der einen Abstand von
zur Pyramidengrundfläche hat. Es gibt genau zwei solche Punkte, die Spitze einer "normalen" Pyramide und die Spitze der invertierten Pyramide.
Damit man die Spitze der invertierten Pyramide erhält, geht man vom Mittelpunkt
der Grundfläche aus
entlang der Geraden, die orthogonal zu
ist, und zwar in die andere Richtung als in Aufgabenteil a). Das heißt, man geht
in die entgegengesetzte Richung des Normalenvekotrs von
.
Es ist
.
Nun können wir bestimmen, in welchem Punkt
die Spitze liegt:
Es ist

, also erhält man

Die Spitze der invertierten Pyramide liegt im Punkt

.
Die Hesse´sche Normalenform
Um den Abstand zwischen einem Punkt und einer Ebene zu bestimmen, gibt es neben dem Lotverfahren auch die Möglichkeit, dies mit der Hesse´schen Normalenform zu berechnen. In diesem Kapitel lernst du, wie du die Normalenform aufstellst und sie zur Abstandsberechnung anwendest.
Merke: Die Hesse´sche Normalenform
Aufgabe 1:
Über dem Schuldach schwebt eine Drohne an der Stelle
und ein Falke schwebt auf der Stelle
. Finde heraus, wer den geringeren Abstand zum Schuldach hat. Das Schuldach lässt sich durch folgende Gleichung beschreiben:
.
Der Normalenvektor der Ebene ist:
Länge des Normalenvektors
bestimmen:
Die HNF lautet nun:
.
Nun werden die Koordinaten von
eingesetzt:
Die Koordinaten von
können in die selbe HNF eingesetzt werden:
.
Damit hat die Drohne einen Abstand von

zum Schuldach und der Falke einen Abstand von

. Die Drohne ist also näher zum Dach als der Vogel.
Der Abstand der Drohne zum Dach beträgt

und der Abstand des Falken zum Dach beträgt

. Damit ist der Abstand der Drohne geriner.
Aufgabe 2: Abstand paralleler Ebenen
Gegeben ist die Ebene
. Bestimme zur Ebene
zwei parallele Ebenen, die von
den Abstand
haben.
Überlege dir, welchen Normalenvektor die Ebenen haben müssen, damit sie parallel zu

sind
Die gesuchten Ebenen haben den gleichen Normalenvektor wie
.
Ansatz:
sei ein Punkt der Ebene
.
Es gilt:
.
nach Aufgabenstellung. Daher gilt:
oder
.
Stelle nun beide Gleichungen nach
um.
Es folgt:
und
.
Dies wird nun in die Ebenengleichung von
eingesetzt:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G_1:2x_1-3x_2+6x_3=48 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G_2:2x_1-3x_2+6x_3=-22}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G_1}
und
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G_2}
haben nun beide den Abstand
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 5}
zur Ebene
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E}
.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G_1:2x_1-3x_2+6x_3=48 }
und
haben beide den Abstand

zu

.
Falls du noch nicht genug hast, kannst du auch versuchen, die Aufgaben vom Lotfußpunktverfahren mit der Hesse´schen Normalenform zu lösen.
Abstand eines Punktes von einer Geraden
Aufgabe 5 Grafische Darstellung: Abstand eines Punktes von einer Geraden
Merke: Der Abstand eines Punktes zu einer Geraden
Der Abstand eines Punktes
zu einer Geraden
ist der Abstand von
und
, wobei
der Lotfußpunkt von
auf
ist.
Für die Bestimmung des Abstandes
gibt es zwei verschiedene Verfahren:
1. Verfahren (Hilfsebene):
Stelle eine Hilfsebene
(in Koordinatenform) auf, die den Punkt
enthält und orthogonal zu zu
ist. Dafür kannst du als Stützvektor
und als Normalenvektor den Richtungsvektor von
nehmen.
Bestimme den Schnittpunkt
von
und
durch Einsetzen.
Zuletzt berechne den Abstand
.
2. Verfahren (Orthogonalität):
Bestimme einen allgmeinen Verbindungsvektor von
zu einem beliebigen Geradenpunkt
in Abhängigkeit vom Geradenparameter
.
Wähle
so, dass der Verbindungsvektor orthogonal zum Richtungsvektor der Geraden
ist.
Berechne nun den Abstand

.
Die richtige Reihenfolge
Im Folgenden wurde der Abstand von
und
bestimmt.
Bringe die einzelnen Schritte in die richtige Reihenfolge.
Aufgabe 6: Lichterkette
Für ein Stadtfest soll von der Spitze
eines Restaurants eine Lichterkette auf kürzestem Weg zur nahen Uferlinie des Kanals
eine Lichterkette gespannt werden.
Berechne die Mindestlänge der Lichterkette auf Meter gerundet.
Die Lichterkette muss mindestens

lang sein.
- Stelle die Hilfsebene
in Koordinatenform auf:
- Schnittpunkt von
und
bestimmen:
in
einsetzten, um
zu bestimmen:
Fehler beim Parsen (Unbekannte Funktion „\begin{pmatrix}“): {\displaystyle g:\vec{x}= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+1*\begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix}=\begin{pmatrix} -3 \\ 5 \\ 5 \end{pmatrix }
- Abstand
bestimmen:
Die Lichterkette muss mindestens

lang sein.
Aufgabe 7: Dreieck
Es sind die Punkte
und
gegeben, durch sie verläuft die Gerade
. Die Strecke
bildet die Grundseite eines Dreiecks mit dem dritten Punkt
.
liegt auf der zu
parallelen Geraden
.
a) Stimmt die Behauptung "Der Flächeninhalt des Dreiecks
ändert sich, je nachdem wo Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A}
auf der Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h}
liegt"? Wenn ja, warum? Wenn nein, warum nicht?
Du kannst mit der Maus den Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A}
verschieben.
Überlege dir, wie man den Flächinhalt eines Dreiecks allgemein berechnet. Wie ändert sich die Höhe des Dreiecks, wenn man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A}
verschiebt?
Die Behauptung stimmt nicht. Den Flächeninhalt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F}
eines Dreiecks kann man bekanntermaßen mit der Formel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F=\frac{1}{2}\cdot G \cdot h}
berechnen, wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G}
die Länge der Grundseite ist.
In dieser Aufgabe bleibt der Abstand
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle Abst(A,g)}
immer gleich, da sich
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A}
auf einer zu
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g}
parallelen Geraden "bewegt". Also ist die Höhe
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h}
all dieser Dreiecke gleich. Deshalb ändert sich auch der Flächeninhalt
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F=\frac{1}{2}\cdot G \cdot h}
nicht.
b) Bestimme den Flächeninhalt des Dreicks Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle ABC}
.
Überlege dir, welche Abstände du berechnen musst, um den Flächeninhalt bestimmen zu können.
Wir bestimmen zunächst die Länge Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G}
der Grundseite:
Es Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle Abst(B,C)=\sqrt((2-0,5)^2+(8-3,5)^2+(1-7)^2)=\sqrt(58,5)}
.
Nun bestimmen wir die Höhe Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h}
, also den Abstand der parallelen Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j}
mithilfe des Verbindungsvektors von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B}
zur Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j}
.(Da die Geraden parallel sind, ist es natürlich egal, welche der Geraden und welchen Punkt auf der anderen Geraden man nimmt. Ihr könntet ebenso mit dem anderen Verfahren, also mit einer Hilfsebene arbeiten):
Der Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L_s=(1+t|1+3t|2-4t)}
ist ein allgemeiner Punkt auf Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j}
. Ein allgemeiner Verbindungsvektor zwischen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j}
ist also gegeben durch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{BL_s}=\begin{pmatrix} (1+t)-2 \\ (1+3t)-8 \\ (2-4t)-1 \end{pmatrix}=\begin{pmatrix} -1+t \\ -7+3t \\ 1-4t \end{pmatrix}}
.
Damit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{BL_s}}
orthogonal zum Richtungsvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j}
ist, muss gelten:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} -1+t \\ -7+3t \\ 1-4t \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}=0 }
bzw. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (t-1)\cdot 1+(-7+3t)\cdot 3 + (1-4t) \cdot (-4)}
, also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t=1}
. Für
ist der Verbindungsvektor also am kürzesten. Somit ist
.
Der Flächeninhalt des Dreiecks beträgt also

Flächeneinheiten.
Der Flächeninhalt des Dreiecks beträgt also

Flächeneinheiten.
- Aufgaben 2-3 (Idee: auch mal was begründen/ vermuten/ argumentieren lassen)
Wenn es geht, GeoGebra einbauen!!!
Abstand zweier windschiefer Geraden
- Janne: Verfahen in richtige Reihenfolge bringen
- Janne: Merksatz
- Aufgaben 2 (Idee: auch mal was begründen/vermuten/ argumentieren lassen)
Vorlage:Box:
Wenn es geht, GeoGebra einbauen!!!
Gemischte Aufgaben
- auf Anfangsaufgabe zurückkommen
- 3 Aufgaben
Wenn es geht, GeoGebra einbauen!!!