Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Punkte und Vektoren im Raum: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 109: | Zeile 109: | ||
{{Box | 1= Aufgabe | {{Box | 1= Aufgabe 6: Gerichtete Größen | 2= Gib das folgende Gesetz mithilfe von Vektoren an: Übt ein Körper A auf einen anderen Körper B eine Kraft aus, so wirkt eine gleich große, aber entgegen gerichtete Kraft von Körper B auf Körper A. | ||
Erläutere, inwiefern sich Kräfte durch Vektoren darstellen lassen. {{Lösung versteckt|1= <math>\vec {F}_{A \to B} = -\vec {F}_{B \to A}</math> | Erläutere, inwiefern sich Kräfte durch Vektoren darstellen lassen. {{Lösung versteckt|1= <math>\vec {F}_{A \to B} = -\vec {F}_{B \to A}</math> | ||
Zeile 115: | Zeile 115: | ||
{{Box|1=Aufgabe | {{Box|1=Aufgabe 7: Länge und Abstände von Vektoren|2= | ||
<quiz display="simple"> | <quiz display="simple"> | ||
{Berechne die Länge der Vektoren:} | {Berechne die Länge der Vektoren:} | ||
Zeile 165: | Zeile 165: | ||
|3=Arbeitsmethode}} | |3=Arbeitsmethode}} | ||
{{Box|1= Aufgabe | {{Box|1= Aufgabe 8: Vektoren addieren und mit einem Skalar multiplizieren|2= | ||
{{LearningApp|width=100%|height=500px|app=11071387}} | {{LearningApp|width=100%|height=500px|app=11071387}} | ||
Zeile 171: | Zeile 171: | ||
|3=Arbeitsmethode|Farbe={{Farbe|gelb|dunkel}}}} | |3=Arbeitsmethode|Farbe={{Farbe|gelb|dunkel}}}} | ||
{{Box|1= Aufgabe | {{Box|1= Aufgabe 9: Lückentext - Geometrische Bedeutung von Vektoraddition und skalarer Multiplikation|2=|3=Arbeitsmethode}} | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Zeile 181: | Zeile 181: | ||
</div> | </div> | ||
{{Box|1= Aufgabe | {{Box|1= Aufgabe 10: Für die ganz Schnellen eine Knobelaufgabe - Besondere Vierecke | ||
|2= | |2= | ||
Version vom 8. Mai 2021, 10:47 Uhr
Wiederholung von Punkten und Vektoren
Wir definieren zwei Rechenoperationen für Vektoren: das Bilden des Vielfachen und der Summe. Die Vektoraddition bezeichnet das bilden der Summe zweier Vektoren gleichen Typs, das heißt dass die beiden Vektoren gleich viele Komponenten haben. Man bildet die Summe, indem man die Einträge der Vektoren komponentenweise addiert. Wir können uns die Addition von Vektoren als ein „Aneinanderlegen“ von zwei Strecken von ggf. verschiedener Länge vorstellen. Nennen wir Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{b}} Vektoren. Wir deuten diese als Pfeile und addieren sie, das heißt wir legen sie hintereinander, sodass der Anfang von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{b} } und die „Spitze“ von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} } übereinstimmen. Ein derartiges Verhalten von Pfeilen ist aus der Physik bekannt. Dort werden oftmals Kräfte und Geschwindigkeiten mit Pfeilen dargestellt. Man kann am Ende zur Addition sagen, dass das Bilden der Summe zweier Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} + \vec{b} } als Hintereinander-Ausführen der durch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{b} } dargestellten Verschiebungen gesehen werden kann.
Das Bilden des Vielfachen eines Vektors wird auch als Multiplikation mit einem Skalar bezeichnet. Wir nennen unseren Vektor wieder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} } und das Skalar bezeichnen wir mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c } . Von jedem Vektor kann das Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c } -Fache gebildet werden, indem alle Komponenten von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} } mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c } multipliziert werden. Ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c>0 } so wird der „Pfeil“ von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} } um den Faktor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c } aufgeblasen (falls Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c > 1} ) oder geschrumpft (falls Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c < 1} ). Ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c<0} , so erhält der Pfeil, der um den Faktor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c } aufgeblasen oder geschrumpft wird, noch eine Richtungsumkehrung und wird zum Gegenvektor.
Wir nennen zwei Vektoren kollinear (oder parallel), wenn einer der Vektoren ein Vielfaches des anderen ist. Mit anderen Worten: Wenn Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{b} } zwei verschiedene Vektoren sind, so sind sie parallel/kollinear zueinander, falls ein Skalar Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c } existiert, sodass gilt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle ca=b } . Dabei ist es egal, ob die beiden Vektoren in unterschiedliche Richtungen zeigen oder nicht.