Benutzer:Buss-Haskert/Wurzeln/Rechnen mit Quadratwurzeln: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | |||
{{Navigation| | {{Navigation| | ||
[[Buss-Haskert/Potenzen|1) Potenzen: Definition]]<br> | [[Buss-Haskert/Potenzen|1) Potenzen: Definition]]<br> |
Version vom 10. November 2021, 16:37 Uhr
1) Potenzen: Definition
2) Potenzgesetze
3) Sehr große und sehr kleine Zahlen: Wissenschaftliche Schreibweise
4) Wurzeln: Definition
SEITE IM AUFBAU
5.1 Multiplikation und Division
Multiplikation und Division von Quadratwurzeln - Herleitung
Berechne die Terme und vergleiche. Was fällt dir auf?
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\sqrt{144}}{\sqrt{16}}=\tfrac{...}{...}=}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{\tfrac{144}{16}}=\sqrt{...}=}
Schau die Beispielrechnungen im nachfolgenden Video an und bearbeite dann die Übungen.
Ziehe die Wurzel jeweils aus den einzelnen Faktoren, wenn die Faktoren Quadratzahlen sind.
Wenn die einzelnen Faktoren keine Quadratzahlen sind, schreibe das Produkt unter ein Wurzelzeichen und berechne zunächst das Produkt. Dieses Produkt ist dann in der Regel eine Quadratzahl.
Beispiel:
2d) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{400\cdot0,64}}
Hier sind beide Faktoren jeweils Quadratzahlen, ziehe also die Wurzel und multipliziere dann die Ergebnisse.
2c) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle = \sqrt{400}\cdot\sqrt{0,64} = 20 \cdot0,8 =16}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2,5}\cdot\sqrt{0,9}}
Hier sind die Zahlen unter der Wurzel (Radikanden) KEINE Quadratzahlen, schreibe also zunächst das Produkt unter eine Wurzel:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle = \sqrt{2,5\cdot0,9} = \sqrt{2,25} }
Das Produkt 2,25 ist eine Quadratzahl, hier kannst du wieder im Kopf die Wurzel berechnen.
= 1,5
4a)
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{...} \cdot \sqrt{289}}
= 34 |Hier siehst du, dass 289 eine Quadratzahl ist, also
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{...} \cdot}
17 = 34
Welche Zahl musst du mit 17 multiplizieren, damit das Produkt 34 beträgt? 2!
Überlege, welche Zahl unter der Wurzel stehen muss, damit die Wurzel 2 beträgt? 2² = 4! Also:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{4} \cdot \sqrt{289}}
= 34
4b)
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{14..} \cdot \sqrt{3}}
= 21 |Hier siehst du, dass 3 KEINE Quadratzahl ist, also schreibe das Produkt unter ein Wurzelzeichen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{14..\cdot 3}}
= Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{21^2}}
|21² = 441
Welche Zahl musst du mit 3 multiplizieren, damit das Produkt 441 beträgt? 147! Also:
5.2 Teilweises Wurzelziehen
Beispielrechnung:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{50}=\sqrt{25\cdot2}=\sqrt{25}\cdot\sqrt{2}=5\sqrt{2}}
Beispiel:
10a) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{9x}=\sqrt{9}\cdot\sqrt{x}=3\sqrt{x}}
9 ist eine QUADRATZAHL, hier kannst du die Wurzel ziehen.
und nun wird es schwieriger
Zerlege die Faktoren in Quadratzahlen und ziehe dann die Wurzel aus den einzelnen Faktoren.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{\tfrac{x^3}{9y}} = \tfrac{\sqrt{x^2x}}{\sqrt{9}\sqrt{y}} = \tfrac{x\sqrt{x}}{3\sqrt{y}}}
Beispiel:
11a)Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt{\tfrac{2y^2}{18}}=\sqrt{\tfrac{1y^2}{9}}=\tfrac{\sqrt{1}\cdot\sqrt{y^2}}{\sqrt{9}}=\tfrac{y}{3}}
Kürze zuerst, dann ziehe so weit wie möglich die Wurzel.
5.3 Addition und Subtraktion (Vorsicht!)
Berechne die Terme und vergleiche. Was fällt dir auf?
Bei der Addition und Subtraktion lassen sich die Radikanden NICHT!!! unter einer Wurzel zusammenfassen!