Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Lineare Funktionen: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 40: | Zeile 40: | ||
{{Lösung versteckt|1=Erstelle zwei Gleichungen, welche die jeweiligen gegebenen Informationen enthalten, in der Form <math>f(x) = mx + b</math>.|2=Tipp 2 - Einsetzen der Funktionswerte|3=Tipp 2 - Einsetzen der gegebenen Funktionswerte}} | {{Lösung versteckt|1=Erstelle zwei Gleichungen, welche die jeweiligen gegebenen Informationen enthalten, in der Form <math>f(x) = mx + b</math>.|2=Tipp 2 - Einsetzen der Funktionswerte|3=Tipp 2 - Einsetzen der gegebenen Funktionswerte}} | ||
{{Lösung versteckt|1 = Nach Einsetzen der Werte sollten deine Funktionen folgendermaßen aussehen: <math>-4 = 2 * 3 + b</math> und <math>6 = 2 * 8 + b</math>. Nun lässt sich <math>b</math> bestimmen und man erhält schlussendlich die Geradengleichung <math>f(x) = 2x - 10</math>.|2 = Lösung|3 = Lösung}} | {{Lösung versteckt|1 = Nach Einsetzen der Werte sollten deine Funktionen folgendermaßen aussehen: <math>-4 = 2 * 3 + b</math> und <math>6 = 2 * 8 + b</math>. Nun lässt sich <math>b</math> bestimmen und man erhält schlussendlich die Geradengleichung <math>f(x) = 2x - 10</math>.|2 = Lösung|3 = Lösung}} | ||
=== Prüfen, ob Punkte auf einer Geraden liegen === | |||
{{Box |Aufgabe 5: Prüfe für die angegebenen linearen Funktionen, welche Punkte auf dem Funktionsgraphen liegen.|Ordne jeder Funktion durch Anklicken die Punkte zu, die auf ihrem Graphen liegen.|Arbeitsmethode}} | |||
{{LearningApp|width:100%|height:700px|app=p446x08nn19}} | |||
{{Lösung versteckt|1 = Setze die Punkte in die Funktionsgleichungen ein.|2=Tipp|3=Tipp}} |
Version vom 28. April 2019, 10:45 Uhr
Lineare Funktionen - ein Überblick
<iframe src="https://learningapps.org/watch?v=ptvafj8jc19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
- Eine lineare Funktion ist eine Gerade, sie hat keine Kurven.
- Auch eine Funktion mit nur einer Zahl ( eine sogenannte Konstante) ist eine Gerade und demnach eine lineare Funktion.
- Grundsätzlich wird einem x-Wert immer nur ein y-Wert zugeordnet.
- Bei linearen Funktionen kann ein y-Wert immer nur von einem x-Wert getroffen werden, außer die Funktion ist eine Konstante. Dies ist bei anderen Funktionenarten nicht so!
- Der y-Achsenabschnitt ist bei linearen Funktionen immer der Wert ohne das x.
- Den x-Achsenabschnitt (die Nullstelle) berechnet man indem man die Funktion gleich 0 setzt.
- Die Steigung ist der Vorfaktor vom x. Die Steigung beschreibt um wie viel der y-Wert nach oben (unten bei negativen Vorzeichen) verschoben werden muss, wenn man den x-Wert um einen erhöht.
- Den Schnittpunkt zweier Funktionen erhält man durch Gleichsetzten die beiden Funktionsgleichungen.
Lineare Funktionen erkennen
<iframe src="https://learningapps.org/watch?v=px8y1m7tj19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
Überlege dir welche geometrischen Form der Graph von lineare Funktionen hat
Überlege dir welchen maximalen Exponent lineare Funktionen haben
Überlege dir ob ein x-Wert von einer Funktion mehrmals angenommen werden darf
Keine Funktion: Der Kreis und Gerade parallel zur y-Achse, sowie die Gleichungen die einem x durchgehend den selben Wert zuordnen. Bei all diesen werden x-Werte mehrmals getroffen, was bei einer Funktion nicht sein darf. Lineare Funktion: Alle Geraden die nicht parallel zur y-Achse verlaufen. Alle Funktionen die maximal den Exponent 1 haben.
Lineare Funktionen - Bestimmung der Geradengleichung
Setze die gegebenen Informationen in die Geradengleichung der Form ein.
Nach Einsetzen der Werte sollte deine Funktion folgendermaßen aussehen: . Nun lässt sich bestimmen und man erhält schlussendlich die Geradengleichung .
Bestimme die Steigung der Geraden, indem du mithilfe der Punkte und ein Steigungsdreieck aufstellst:
Erstelle zwei Gleichungen, welche die jeweiligen gegebenen Informationen enthalten, in der Form .
Nach Einsetzen der Werte sollten deine Funktionen folgendermaßen aussehen: und . Nun lässt sich bestimmen und man erhält schlussendlich die Geradengleichung .
Prüfen, ob Punkte auf einer Geraden liegen
Setze die Punkte in die Funktionsgleichungen ein.