Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Lineare Funktionen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 50: | Zeile 50: | ||
{{Lösung versteckt|1 = Wir setzen beispielhaft den Punkt <math>(-1|1)</math> in die Funktion <math>f(x) = 2x + 3</math> ein. Dann ergibt sich: <math>f(-1) = 2 \cdot (-1) + 3 = -2 + 3 = 1</math>. Der Punkt liegt also auf dem Graphen der Funktion.<br />Nun setzen wir in dieselbe Funktion noch den Punkt <math>(2|10)</math> ein. Es ergibt sich: <math>f(2) = 2 \cdot 2 + 3 = 4 + 3 = 7</math>. Der Funktionswert an der Stelle 2 ist nicht 10, sondern 7, der Punkt <math>(2|10)</math> liegt also nicht auf dem Graphen.<br /> Für die anderen Punkte und Funktionen geht man genauso vor und erhält:<br /> Auf dem Graphen der Funktion <math>f(x) = 2x + 3</math> liegen die Punkte: <math>(-1|1)</math>,<math>(0|3)</math>,<math>(2|7)</math>.<br />Auf dem Graphen der Funktion <math>f(x) = -x + 12</math> liegen die Punkte: <math>(2|10)</math>,<math>(12|0)</math>,<math>(3,5|\frac{17}{2})</math>,<math>(9|3)</math>.<br />Auf dem Graphen der Funktion <math>f(x) = -\frac{2}{3}x-\frac{5}{3}</math> liegen die Punkte: <math>(-1|-1)</math>,<math>(5|-5)</math>.<br />Auf dem Graphen der Funktion <math>f(x) = \frac{3}{8}</math> liegen die Punkte: <math>(4|\frac{3}{8})</math>,<math>(9|\frac{9}{24})</math>.<br />Auf dem Graphen der Funktion <math>f(x) = -2x + 8</math> liegt der Punkt: <math>(2,5|3)</math>.|2 = Lösung|3 = Lösung}} | {{Lösung versteckt|1 = Wir setzen beispielhaft den Punkt <math>(-1|1)</math> in die Funktion <math>f(x) = 2x + 3</math> ein. Dann ergibt sich: <math>f(-1) = 2 \cdot (-1) + 3 = -2 + 3 = 1</math>. Der Punkt liegt also auf dem Graphen der Funktion.<br />Nun setzen wir in dieselbe Funktion noch den Punkt <math>(2|10)</math> ein. Es ergibt sich: <math>f(2) = 2 \cdot 2 + 3 = 4 + 3 = 7</math>. Der Funktionswert an der Stelle 2 ist nicht 10, sondern 7, der Punkt <math>(2|10)</math> liegt also nicht auf dem Graphen.<br /> Für die anderen Punkte und Funktionen geht man genauso vor und erhält:<br /> Auf dem Graphen der Funktion <math>f(x) = 2x + 3</math> liegen die Punkte: <math>(-1|1)</math>,<math>(0|3)</math>,<math>(2|7)</math>.<br />Auf dem Graphen der Funktion <math>f(x) = -x + 12</math> liegen die Punkte: <math>(2|10)</math>,<math>(12|0)</math>,<math>(3,5|\frac{17}{2})</math>,<math>(9|3)</math>.<br />Auf dem Graphen der Funktion <math>f(x) = -\frac{2}{3}x-\frac{5}{3}</math> liegen die Punkte: <math>(-1|-1)</math>,<math>(5|-5)</math>.<br />Auf dem Graphen der Funktion <math>f(x) = \frac{3}{8}</math> liegen die Punkte: <math>(4|\frac{3}{8})</math>,<math>(9|\frac{9}{24})</math>.<br />Auf dem Graphen der Funktion <math>f(x) = -2x + 8</math> liegt der Punkt: <math>(2,5|3)</math>.|2 = Lösung|3 = Lösung}} | ||
===Eine lineare Gleichung einer Geraden zuordnen=== | |||
{{Box|Aufgabe 6: Finde Paare|Ordne den gegebenen linearen Gleichungen die zugehörige Gerade zu. Beachte: Nicht zu jeder Gleichung ist eine Gerade gegeben.|Arbeitsmethode}} | |||
<iframe src="https://learningapps.org/watch?v=pdwa2pz1k19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | |||
===Lineare Funktionen im Anwendungskontext=== | ===Lineare Funktionen im Anwendungskontext=== |
Version vom 1. Mai 2019, 11:58 Uhr
Lineare Funktionen - ein Überblick
<iframe src="https://learningapps.org/watch?v=ptvafj8jc19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
- Eine lineare Funktion ist eine Gerade, sie hat keine Kurven.
- Auch eine Funktion mit nur einer Zahl (eine sogenannte Konstante) ist eine Gerade und demnach eine lineare Funktion.
- Grundsätzlich wird einem x-Wert immer nur ein y-Wert zugeordnet.
- Bei linearen Funktionen kann ein y-Wert immer nur von einem x-Wert getroffen werden, außer die Funktion ist eine Konstante. Dies ist bei anderen Funktionenarten nicht so!
- Der y-Achsenabschnitt ist bei linearen Funktionen immer der Wert ohne das x.
- Den x-Achsenabschnitt (die Nullstelle) berechnet man, indem man die Funktion gleich 0 setzt.
- Die Steigung ist der Vorfaktor vom x. Die Steigung beschreibt, um wie viel der y-Wert nach oben (unten bei negativen Vorzeichen) verschoben werden muss, wenn man den x-Wert um einen erhöht.
- Den Schnittpunkt zweier Funktionen erhält man durch Gleichsetzten die beiden Funktionsgleichungen.
Lineare Funktionen erkennen
<iframe src="https://learningapps.org/watch?v=px8y1m7tj19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
Lineare Funktionen - Bestimmung der Geradengleichung
Prüfen, ob Punkte auf einer Geraden liegen
Nun setzen wir in dieselbe Funktion noch den Punkt ein. Es ergibt sich: . Der Funktionswert an der Stelle 2 ist nicht 10, sondern 7, der Punkt liegt also nicht auf dem Graphen.
Für die anderen Punkte und Funktionen geht man genauso vor und erhält:
Auf dem Graphen der Funktion liegen die Punkte: ,,.
Auf dem Graphen der Funktion liegen die Punkte: ,,,.
Auf dem Graphen der Funktion liegen die Punkte: ,.
Auf dem Graphen der Funktion liegen die Punkte: ,.
Auf dem Graphen der Funktion liegt der Punkt: .
Eine lineare Gleichung einer Geraden zuordnen
<iframe src="https://learningapps.org/watch?v=pdwa2pz1k19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
Lineare Funktionen im Anwendungskontext
a) Stelle eine Funktionsvorschrift für Isoldes Entfernung von zu Hause und eine Funktionsvorschrift für die Entfernung der Mutter von zu Hause in Abhängigkeit von der Zeit auf.
Isolde ist zu Beginn 11km, also 1100m von zu Hause entfernt. Der y-Achsenabschnitt von f ist demnach a=1100. Isolde legt pro Minute 75m zurück. Dabei entfernt sie sich nicht von zu Hause, sondern nähert sich. Die Steigung b ist deshalb negativ und beträgt -75. Insgesamt ergibt sich die Vorschrift .
Die Mutter startet zu Hause, der y-Achsenabschnitt d von g(x) ist also gleich 0. Sie fährt mit einer Geschwindigkeit von 72km/h, was 1200m pro Minute entspricht. Damit entfernt sie sich von zu Hause, die Steigung d ist deshalb positiv und beträgt 1200. Insgesamt ergibt sich die Vorschrift .
b) Berechne, wie lange es dauert, bis die beiden sich treffen.
Wir setzen die Funktionsvorschriften gleich, um den x-Wert des Schnittpunktes zu bestimmen.
.