Benutzer:Buss-Haskert/Dreiecke/Winkelsumme im Dreieck: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 1: Zeile 1:
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]]
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]]
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
{{Navigation|[[Buss-Haskert/Dreiecke|Dreiecke - Vorwissen]]
{{Navigation|[[Benutzer:Buss-Haskert/Dreiecke|Dreiecke - Vorwissen]]
[[Benutzer:Buss-Haskert/Dreiecke/Winkel im Schnittpunkt von Geraden|1) Winkel im Schnittpunkt von Geraden]]<br>
[[Benutzer:Buss-Haskert/Dreiecke/Winkel im Schnittpunkt von Geraden|1) Winkel im Schnittpunkt von Geraden]]<br>
[[Benutzer:Buss-Haskert/Dreiecke/Winkelsumme im Dreieck|2) Winkelsumme im Dreieck]]<br>
[[Benutzer:Buss-Haskert/Dreiecke/Winkelsumme im Dreieck|2) Winkelsumme im Dreieck]]<br>

Version vom 20. November 2023, 05:11 Uhr

Schullogo HLR.jpg

Buch des FLINK-Teams (12/2022) auf GeoGebra: https://www.geogebra.org/m/nazhbmm4

2) Winkelsumme im Dreieck

Wiederhole die Beschriftungen im Dreieck:


Beschriftungen im Dreieck
Zeichne ein Dreieck in dein Heft und beschrifte es vollständig (Eckpunkte, Seiten und Winkel).


Bist du fit? Wähle 2 Apps aus:


Entdecken: Winkelsumme im Dreieck
Zeichne in GeoGebra ein Dreieck. Markiere die Winkel. Bewege die Eckpunkte des Dreiecks. Was fällt dir auf?

Tipps zur Konstruktion:
1. Wähle die Schaltfläche "Vieleck" und zeichne ein Dreieck mit den Eckpunkten A, B und C.
2. Lass dir den Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} anzeigen, indem du nacheinander auf die Punkte B, A und C klickst.
3. Lass dir ebenso die anderen Winkel anzeigen.
4. Wähle den Punkt "Tabelle" aus und lass dir die Größen der Winkel in den Zellen anzeigen.

5. Lass dir in der Tabelle die Winkelsumme anzeigen.


Falls nötig, nutze die fertigen Applets:

GeoGebra



Winkelsummensatz

Die Winkelsumme eines Dreiecks beträgt 180°.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} + Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} + Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} = 180°


Erkläre die Herleitung des Winkelsummensatzes mithilfe des nachfolgenden GeoGebra-Applets:

GeoGebra


Das Video fasst dies noch einmal zusammen:


Übung 1

Löse die nachfolgenden Aufgaben aus dem Buch. Achte auf eine übersichtliche und vollständige Darstellung deiner Rechnung. Nutze dazu bei Bedarf die Tipps.

  • S. 77 Nr. 1
  • S. 77 Nr. 2
  • S. 77 Nr. 3

Schreibweisen:

1. Möglichkeit:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} + 100°+ 50 = 180°, also ist

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} = 180° - 100° - 50° = 30°
2. Möglichkeit:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} + 100°+ 50 = 180°, also ist

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} = 180° - (100° + 50°) = 180° - 150° = 30°
 

Bestimme Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} mit dem Winkelsummensatz. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \delta} ist der Nebenwinkel von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} .





Übung 2

Löse die nachfolgenden Aufgaben aus dem Buch. Achte auf eine übersichtliche und vollständige Darstellung deiner Rechnung. Nutze dazu bei Bedarf die Tipps.

  • S. 78 Nr. 4a,d (Zeichne nur ein Koordinatensystem)
  • S. 78 Nr. 5
  • S. 78 Nr. 6
  • S. 78 Nr. 7
Erinnerung: Nebenwinkel ergänzen sich zu 180°
Der fehlende Winkel neben Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} an der Gerade g ist ein Wechselwinkel (Z-Winkel) zum Winkel 60°. Dann kannst du mit dem Wissen, dass ein gestreckter Winkel 180° hat, Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} berechnen.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \delta} ist ein Stufenwinkel des Winkels 50°.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} ist ein Nebenwinkel von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \delta}

Um Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \epsilon} zu bestimmen, berechne zunächst den Nebenwinkel mithilfe der Winkelsumme im kleinen Dreieck.

Bestimme im großen Dreieck mit der Winkelsumme den Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} .

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} ' ist dann Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} - 40°.

Und nun für Profis: