Digitale Werkzeuge in der Schule/Ableitungen üben und vertiefen/Die Steigung in einem Punkt - die Ableitung als Tangentensteigung
Inhaltsübersicht
a) Unterscheidung Tangente, Sekante und Normale - Aufgabe 1
b) Zuordnungsaufgaben bezüglich der Tangentensteigung - Aufgabe 2, 3, 4 und 5*
c) Untersuchung einer Funktion - Aufgabe 6, 7 und 8*
Unterscheidung Tangente, Sekante und Normale
<iframe src="https://learningapps.org/watch?v=p1s1zd2av17" style="border:0px;width:100%;height:400px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<iframe src="https://learningapps.org/watch?v=p84w33c8a17" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<iframe src="https://learningapps.org/watch?v=pf4ayrb5j17" style="border:0px;width:100%;height:750px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<iframe src="https://learningapps.org/watch?v=psc1spdk517" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
Teil 1)
<iframe scrolling="no" title="Tangentensteigung beim Sinus" src="https://www.geogebra.org/material/iframe/id/qtyjMzaR/width/700/height/500/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/true/ctl/false" width="700px" height="500px" style="border:0px;"> </iframe>
<iframe src="https://learningapps.org/watch?v=p1mo3ok0v17" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
Teil 2) Nachdem du nun die Karten richtig einsortiert hast, erkläre Tom, warum die Karten, die nicht zu der obigen Sinusfunktion passen, falsch sind.
1) Die Steigung ist zwischen 0 und 2 nicht negativ.
2) Die Steigung ist in allen x-Werten gleich.
3) Da diese Sinusfunktion auf der y-Achse um 2 nach oben verschoben wurde, ändert sich die Steigung in allen Punkten.
{{Lösung versteckt|1= Begründung: Die Steigung ist nur in linearen Funktionen (g(x) = m*x + b) gleich.
Begründung: Durch die Verschiebung einer Funktion auf der y-Achse verändert sich nicht die Steigung,
c) Untersuchung einer Funktion
<iframe src="https://learningapps.org/watch?v=piymfh66317" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
Ein Raupenfahreug mit einer Steigfähigkeit von 76% fährt einen Hang hinauf.
Die Kurve des Hangs lässt sich mit der Funktion f(x)=1/50x² beschreiben.
Für die Bauarbeiten muss die Raupe bis zur Markierungsstange bei x=20 Meter gelangen, schafft sie das?
<iframe src="https://learningapps.org/watch?v=pab2g1ytv17" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
Legt man ein Steigungsdreieck an die Tangente am Punkt f(20), so kann man beispielweise die Werte f(15)=4 und f(25)=12 ablesen. Die Steigung in % lässt sich durch Δy/Δx*100 bestimmen, nimmt man f(15)=4 und f(25)=12 ist Δx=10 und Δy=8.
Die Steigung des Hangs beträgt 80% somit übersteigt diese die Steigfähigkeit der Raupe.
a) Überleg dir, welche zwei Tangenten Luis meint und warum?
Denkst du es gibt hier eine Tangente oder sogar mehrere?
Zeichne Luis` Tangenten mit dem Graphen in dein Heft und ergänze ggf. deine Tangente(n).
<iframe scrolling="no" title="Eine Tangente?" src="https://www.geogebra.org/material/iframe/id/SM67Ex9h/width/700/height/505/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/true/ctl/false" width="700px" height="505px" style="border:0px;"> </iframe>
6).
6) ist.
Falls es jedoch eine Steigung in einem Punkt einer Funktion gibt, so muss diese eindeutig sein.
Ansonsten ist die Funktion nicht differenzierbar.
b) Zeichne die Steigung der Funktion in dein Heft. Du kannst dich auf die Intervalle [0;6] und [6;12] beschränken. Wie verläuft die Steigung und was passiert im Punkt P(6|6)?