Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Abstände von Objekten im Raum

Aus ZUM Projektwiki
Info

In diesem Lernpfadkapitel kannst du das Thema "Abstände von Objekten im Raum" wiederholen und vertiefen.

Wie du im Inhaltsverzeichnis siehst, gibt es drei Abschnitte: einen zum Abstand zwischen einer Ebene und einem Punkt, einen zum Abstand zwischen einer Geraden und einem Punkt und einen dritten zum Abstand zwischen zwei windschiefen Geraden. Suche dir einfach aus, was du üben möchtest. Bei jedem Abschnitt werden erst die jeweiligen Verfahren wiederholt und anschließend gibt es ein paar Aufgaben dazu, darunter sind auch Knobelaufgaben. Vorher kannst du noch die Einstiegsaufgabe machen, um deine generelle inhaltliche Vorstellung zu testen.

Dieses Thema ist nur für den LK gedacht, daher sind alle Aufgaben auch automatisch LK-Aufgaben und nicht noch jeweils mit einem ⭐ gekennzeichnet.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Viel Erfolg und Spaß!

Einstieg

Aufgabe 1: Sachsituationen und Rechenschritte zuordnen

Zu welcher Sachsituation passen die Rechenschritte jeweils? Ordne zu.

Schiebe die Kästen an die richtige Stelle in der Tabelle. Du kannst die Kästen und Bilder vergrößern, indem du sie anklickst.


Je nachdem, bei welchem Abstandsproblem du hier noch Schwierigkeiten hattest oder was du einfach noch üben willst, kannst du dir den jeweiligen Abschnitt dieses Lernpfadkapitels anschauen.

Abstand eines Punktes von einer Ebene

Aufgabe 2: Überblick: Abstand Punkt Ebene
Abstand Punkt Ebene

Bei dieser Aufgabe kannst du einen Überblick über die Bestimmung des Abstandes zwischen einem Punkt und einer Ebene mit dem Lotfußpunktverfahren bekommen. Es geht auch um wichtige Begriffe in diesem Zusammenhang.

Fülle die Lücken mit den richtigen Wörtern. Sie werden dir angezeigt, sobald du auf eine Lücke klickst. Wenn du fertig bist, klicke auf den Haken unten rechts.

Die Abbildung kann dir helfen.


Merke: Abstand eines Punktes P zu einer Ebene E - Lotfußpunktverfahren

Das Vorgehen aus Aufgabe 2 hier nochmal detalliert erklärt:

  1. Stelle die Gleichung für die zu orthogonale Gerade (also die Lotgerade) durch auf. Dabei kannst du als Stützvektor und als Richtungsvektor den Normalenvektor von nutzen: .
  2. Bestimme den Schnittpunkt von der Lotgeraden und der Ebene . ist der Lotfußpunkt.
  3. Bestimme den Abstand zwischen den Punkten und , indem du den Betrag des Vektors berechnest.


Aufgabe 3: Lotfußpunktverfahren anwenden

Berechne den Abstand von der Ebene und dem Punkt . Verwende dafür das Lotfußpunktverfahren.

Abstand von und :

Die Gleichung für die zu orthogonale Gerade (also die Lotgerade) durch aufstellen:

.

Den Lotfußpunkt bestimmen:

in einsetzten:

Der Lotfußpunkt ist .

Den Abstand zwischen den Punkten und bestimmen:


Merke: Formel für den Abstand eines Punktes von einer Ebene

Um den Abstand zwischen einem Punkt und einer Ebene zu bestimmen, gibt es neben dem Lotfußpunktverfahren auch die Möglichkeit, diesen mit einer Formel zu berechnen.

Gegeben ist eine Ebene durch die Koordinatengleichung und ein Punkt .

1. Stelle nun die Formel auf: Lies dazu aus der Koordinatengleichung der Ebene den Normalenvektor ab.

Bestimme dann die Länge des Normalenvektors: .

Die Formel lautet nun: .

2. Berechne den Abstand, indem du die Koordinaten des Punktes in die Formel einsetzt:

Die folgenden Aufgaben kannst du entweder mit dem Lotfußpunktverfahren oder der Formel für den Abstand eines Punktes von einer Ebene lösen.

Aufgabe 4: Abstand zum Schuldach

Anton und Bianca fliegen jeweils eine Drohne über das Dach ihrer Schule. Antons Drohne schwebt an der Stelle und Biancas Drohne schwebt an der Stelle .

Finde heraus, wer den geringeren Abstand zum Schuldach hat. Das Schuldach lässt sich durch folgende Gleichung beschreiben: . Du darfst dir aussuchen, welches Verfahren du benutzt.

Drone with GoPro digital camera mounted underneath - 22 April 2013.jpg


Abstandsberechnung mit der Formel für den Abstand eines Punktes von einer Ebene: Der Normalenvektor der Ebene ist:

Länge des Normalenvektors bestimmen:

Es folgt: .

Nun werden die Koordinaten von eingesetzt:

Die Koordinaten von können in die selbe Formel eingesetzt werden: .

Damit hat die Drohne von Anton einen Abstand von LE zum Schuldach und die Drohne von Bianca einen Abstand von LE. Antons Drohne ist also näher zum Dach als Biancas Drohne.

Abstand von zu :

Zuerst wird die Geradengleichung der Lotgeraden zu durch aufgestellt. Mit dem Ortsvektor von als Stützvektor und dem Normalenvektor von als Richtungsvektor ist .

Wir bestimmen den Schnittpunkt von mit . Einsetzen von einem allgemeinen Punkt von in ergibt , also . Durch Einsetzen in die Geradengleichung erhalten wir den Lotfußpunkt .

Der Abstand zwischen und beträgt LE wegen .

Abstand von zu :

Zuerst wird die Geradengleichung der Lotgeraden zu durch aufgestellt. Mit dem Ortsvektor von als Stützvektor und dem Normalenvektor von als Richtungsvektor ist .

Wir bestimmen den Schnittpunkt von mit . Einsetzen von einem allgemeinen Punkt von in ergibt , also . Durch Einsetzen in die Geradengleichung erhalten wir den Lotfußpunkt .

Der Abstand zwischen und beträgt LE wegen .

Damit hat die Drohne von Anton einen Abstand von LE zum Schuldach und die Drohne von Bianca einen Abstand von LE. Antons Drohne ist also näher zum Dach als Biancas Drohne.



Aufgabe 5: Glaspyramide - Teil 1


Glaspyramide des Louvre

Im Innenhof des Louvre-Museums in Paris befindet sich eine große Glaspyramide. Die quadratische Grundfläche liegt in einer Ebene, die durch die Ebenengleichung beschrieben werden kann. Die Spitze liegt im Punkt . Eine Längeneinheit LE im Koordinatensystem entpricht m.

Welche Höhe hat die Pyramide in Metern?

Mach dir eine Skizze. Welche Teilschritte brauchst du zur Bestimmung des Abstands? Wenn du dir unsicher bist, schau nochmal in die Merkbox oben.

Die Pyramide hat eine Höhe von m.

Der Lösungsweg:

Die Höhe der Pyramide kann man bestimmen, indem man den Abstand zwischen der Spitze und der Ebene bestimmt.

Lösung mit dem Lotfußpunktverfahren:

Zuerst wird die Geradengleichung der Lotgeraden zu durch aufgestellt. Wir nehmen den Ortsvektor von als Stützvektor und den Normalenvektor von als Richtungsvektor, also: .

Wir bestimmen den Schnittpunkt von mit . Einsetzen von einem allgemeinen Punkt von in ergibt , also . Durch Einsetzen in die Geradengleichung erhalten wir den Lotfußpunkt . Dies ist gleichtzeitig der Mittelpunkt der Grundfläche der Glaspyramide.

Der Abstand zwischen und beträgt LE wegen . Die Pyramide hat also eine Höhe von .

Lösung mit der Formel für den Abstand eines Punktes von einer Ebene:

Ein Normalenvektor der Ebene ist , dieser hat die Länge . Setzt man die Koordinaten von in die Formel ein, ergibt sich der Abstand

, das heißt, die Pyramide hat eine Höhe von .


Aufgabe 6: Glaspyramide - Teil 2


An einer anderen Stelle im Innenhof des Louvre befindet sich eine invertierte Glaspyramide. Das bedeutet, ihre quadratische Grundfläche liegt ebenfalls in der Ebene , ihre Spitze ist aber unterhalb des Innenhofs. Man kann sie in einem Raum unterhalb des Innenhofs besichtigen. Die Länge der vier Kanten von der Spitze bis zur jeweiligen Ecke der Grundfläche beträgt jeweils m. Die Grundfläche hat m lange Diagonalen, die sich im Punkt schneiden. In welchem Punkt liegt die Spitze der umgedrehten Pyramide?


Zeichne eine Skizze, in der du alle bekannten Längenangaben und Punkte einträgst. Was musst du wissen, um die Position der Spitze herauszufinden?

Diese Skizze der Pyramide kannst du mit deiner Maus drehen und vergrößern.

Wenn du die Höhe der Pyramide kennst, weißt du, welchen Abstand die Spitze von der Grundfläche hat. Du kennst auch schon den Mittelpunkt der Pyramide und kannst entlang des Normalenvektors von zur Spitze gelangen.

GeoGebra
Berechnung der Höhe der Pyramide
Du kannst die Höhe der Pyramide mithilfe des Satzes von Pythagoras und der Längenangaben berechnen.

Die Spitze der invertierten Pyramide liegt im Punkt .

Hier der Lösungsweg:

Die Höhe der Pyramide kann man mit dem Satz des Pythagoras und den Längenangaben für die Diagonale der Grundfläche und die Kanten berechnen: (siehe Zeichnung zu Tipp 3)

Es ist , also beträgt die Höhe der invertierten Pyramide m, was LE im Koordinatensystem entspricht.


Die Spitze der umgedrehten Pyramide liegt also in einem Punkt, der einen Abstand von LE zur Pyramidengrundfläche hat. Es gibt genau zwei solche Punkte, die Spitze einer "normalen" Pyramide und die Spitze der invertierten Pyramide.

Damit man die Spitze der invertierten Pyramide erhält, geht man vom Mittelpunkt der Grundfläche aus LE entlang der Geraden, die orthogonal zu ist, und zwar in die andere Richtung als in der Aufgabe "Glaspyramide - Teil 1". Das heißt, man geht LE in die entgegengesetzte Richtung des Normalenvektors von .

Es ist , also ist .

Nun können wir bestimmen, in welchem Punkt die Spitze liegt:

Es ist , also erhält man


Aufgabe 7: Abstand paralleler Ebenen

Gegeben ist die Ebene . Bestimme zur Ebene zwei parallele Ebenen, die von den Abstand haben.


Überlege dir, welchen Normalenvektor die Ebenen haben müssen, damit sie parallel zu sind


und

haben beide den Abstand zu .


Hier der Lösungsweg:

Die gesuchten Ebenen haben den gleichen Normalenvektor wie .


Ansatz:


sei ein Punkt der Ebene . Wir wissen also, dass für die Ebenengleichung von erfüllt sein muss, also dass gelten muss.


Es gilt: .


nach Aufgabenstellung. Daher gilt: oder .


Stelle nun beide Gleichungen nach um.

Es folgt: und .


Dies wird nun in die Ebenengleichung von eingesetzt:




und haben nun beide den Abstand zur Ebene .

Abstand eines Punktes von einer Geraden

Aufgabe 8: Grafische Darstellung: Abstand eines Punktes von einer Geraden

Bewege den Punkt auf der Geraden , um dir den jeweiligen Abstand zwischen den Punkten und anzeigen zu lassen. Rechts neben der Geraden siehst du, wie groß der Abstand jeweils ist.

Wann ist der Abstand vom Punkt zur Geraden am kleinsten?

Wie groß ist der Winkel zwischen und der Geraden durch und ? Wie nennt man dann?

Versuche es zuerst ohne die Hilfslinie. Überprüfe dich dann selbst.

GeoGebra

Der Abstand ist am kleinsten, wenn orthogonal zu ist. Dies kannst du sehen, wenn du dir die Hilfslinie anzeigen lässt.

Dann nennt man den Punkt den Lotfußpunkt von auf .


Merke: Der Abstand eines Punktes zu einer Geraden

Der Abstand eines Punktes zu einer Geraden ist der Abstand von und , wobei der Lotfußpunkt von auf ist.

Für die Bestimmung des Abstandes gibt es zwei verschiedene Verfahren:

Verfahren Hilfsebene

  1. Stelle eine Hilfsebene (in Koordinatenform) auf, die den Punkt enthält und orthogonal zu zu ist. Dafür kannst du als Stützvektor und als Normalenvektor den Richtungsvektor von nehmen.
  2. Bestimme den Schnittpunkt von und durch Einsetzen.
  3. Berechne den Abstand .

Verfahren Orthogonalität

  1. Bestimme einen allgmeinen Verbindungsvektor von zu einem beliebigen Geradenpunkt in Abhängigkeit vom Geradenparameter .
  2. Wähle so, dass der Verbindungsvektor orthogonal zum Richtungsvektor der Geraden ist.
  3. Berechne nun den Abstand .


Aufgabe 9: Lichterkette
Crystal-ball-fairy-lights1.jpg

Für ein Stadtfest soll von der Dachspitze eines Restaurants eine Lichterkette auf kürzestem Weg zur nahen Uferlinie des Kanals gespannt werden. Eine Längeneinheit im Koordinatensystem entspricht m.

Berechne die Mindestlänge der Lichterkette auf Meter gerundet.

Die Lichterkette muss mindestens Meter lang sein.

Hier der Lösungsweg:

1. Stelle die Hilfsebene in Koordinatenform auf:

2. Schnittpunkt von und bestimmen:

3. in einsetzten, um zu bestimmen:

4. Abstand bestimmen: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle d(P;L)=\sqrt{(-3-(-2))^2+(5-3)^2+(5+10)^2}=\sqrt{30}\approx 5,477}

Die Lichterkette muss mindestens Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 5,48} Meter lang sein.


Aufgabe 10: Die richtige Reihenfolge

Im Folgenden wurde der Abstand von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A(3|9|-2)} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g:\vec{x}=\begin{pmatrix} 9 \\ -3 \\ 2 \end{pmatrix}+s\cdot\begin{pmatrix} 4 \\ -5 \\ -7 \end{pmatrix}} bestimmt. Bringe die einzelnen Schritte in die richtige Reihenfolge.



Aufgabe 11: Dreieck

Betrachte das Dreieck Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle DBC} . Es sind die Punkte Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B(2|8|1) } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle C(0,5|3,5|7) } gegeben, durch sie verläuft die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle i } . Der Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle D} liegt auf der zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle i } parallelen Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j:\vec{x}= \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}+t\cdot\begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix} } .

a) Stimmt die Behauptung "Der Flächeninhalt des Dreiecks Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle DBC} ändert sich, je nachdem wo Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle D} auf der Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j} liegt"? Wenn ja, warum? Wenn nein, warum nicht?

Du kannst mit der Maus den Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle D} verschieben.

GeoGebra
Überlege dir, wie man den Flächinhalt eines Dreiecks allgemein berechnet. Wie ändert sich die Höhe des Dreiecks, wenn man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle D} verschiebt?

Die Behauptung stimmt nicht. Den Flächeninhalt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_\{text{DBC}}} eines Dreiecks kann man bekanntermaßen mit der Formel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_\{text{DBC}}=\frac{1}{2}\cdot g \cdot h} berechnen, wobei die Länge der Grundseite ist.

In dieser Aufgabe bleibt der Abstand immer gleich, da sich auf einer zu parallelen Geraden "bewegt". Also ist die Höhe all dieser Dreiecke gleich. Deshalb ändert sich auch der Flächeninhalt Fehler beim Parsen (Syntaxfehler): {\displaystyle A_\{text{DBC}}=\frac{1}{2}\cdot g \cdot h} nicht.

b) Bestimme den Flächeninhalt des Dreicks .

Überlege dir, welche Abstände du berechnen musst, um den Flächeninhalt bestimmen zu können.

Der Flächeninhalt des Dreiecks beträgt ungefähr Flächeneinheiten.

Ein möglicher Lösungsweg: Wir bestimmen zunächst die Länge der Grundseite: Es .

Nun bestimmen wir die Höhe , also den Abstand der parallelen Geraden und mithilfe des Verbindungsvektors von zur Geraden .(Da die Geraden parallel sind, ist es natürlich egal, welche der Geraden und welchen Punkt auf der anderen Geraden man nimmt. Ihr könntet ebenso mit dem anderen Verfahren, also mit einer Hilfsebene arbeiten):

Der Punkt ist ein allgemeiner Punkt auf . Ein allgemeiner Verbindungsvektor zwischen und ist also gegeben durch .

Damit orthogonal zum Richtungsvektor von ist, muss gelten: bzw. . Es folgt , also ist der Verbindungsvektor für am kürzesten. Somit ist .

Der Flächeninhalt des Dreiecks beträgt also Fehler beim Parsen (Syntaxfehler): {\displaystyle A_\{text{DBC}}=\frac{1}{2}\cdot g \cdot h=\frac{1}{2}\cdot \sqrt{58,5} \cdot 5\approx 19,12} Flächeneinheiten.

Abstand zweier windschiefer Geraden

Aufgabe 12: Die kürzeste Verbindungsstrecke zwischen windschiefen Geraden

Verschiebe die Punkte und so, dass die kürzeste Verbindungsstrecke zwischen den windschiefen Geraden und ist. Du kannst die Grafik mit deiner Maus drehen, um die Geraden aus anderen Perspektiven zu betrachten.

GeoGebra
Damit die kürzeste Verbindungsstrecke zwischen den windschiefen Geraden und ist, müssen beide Winkel groß sein.


Merke: Der Abstand windschiefer Geraden

Der Abstand zweier windschiefer Geraden und ist die kürzeste Verbindung zwischen einem Punkt der Geraden und einem Punkt der Geraden . Diese kürzeste Verbindungsstrecke zwischen den beiden Geraden ist sowohl orthogonal zu als auch orthogonal zu und heißt gemeinsames Lot der windschiefen Geraden und .

Für die Bestimmung des Abstandes berechnet man also die Länge des gemeinsamen Lotes der Geraden. Dafür gibt es wieder verschiedene Möglichkeiten. Hier werden zwei Verfahren noch einmal zusammengefasst: Seien und die windschiefen Geraden.

Verfahren Gemeinsames Lot

  1. Bestimme die Geradenpunkte und in Abhängigkeit von dem jeweiligen Geradenparameter.
  2. Stelle den Verbindungsvektor in Abhängigkeit von den Geradenparametern auf.
  3. Bestimme nun die Parameter und so, dass der Verbindungsvektor orthogonal zu den Richtungsvektoren von und ist. Du löst also das lineare Gleichungssystem mit den beiden Gleichungen und .
  4. Mit diesen Parametern erhältst du die Lotfußpunkte und und kannst den Abstand bestimmen.

Verfahren Hilfsebene

Es gibt eine Ebene , sodass in liegt und parallel zu ist. Für diese Ebene ist dann der Abstand zwischen den Geraden gleich dem Abstand zwischen und einem beliebigen Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H} auf Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} . Jeder Normalenvektor von dieser Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ist orthogonal zu den Richtungsvektoren von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} .

  1. Bestimme aus den Gleichungen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}\ast\vec{n}=0} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v}\ast\vec{n}=0} einen Normalenvektor.
  2. Stelle die Normalengleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (\vec{x}-\vec{p})\ast\vec{n}=0} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} auf.
  3. Bestimme mit der Formel für den Abstand eines Punktes von einer Ebene oder dem Lotfußpunktverfahren (siehe Abschnitt Abstand Punkt Ebene) den Abstand Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle d(E;H)=d(g;h)} .


Aufgabe 13: Maulwurfstunnel
Maulwurf

Zwei Maulwürfe graben Tunnel mit einem Durchmesser von jeweils Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 5} cm.

Der erste Maulwurf gräbt entlang der Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g:\vec{x}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}+s\cdot \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}} und der zweite entlang der Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h:\vec{x}=\begin{pmatrix} 6 \\ 6 \\ 18 \end{pmatrix}+t\cdot \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}} wobei diese Geraden jeweils in der Mitte des Tunnels liegen.

Die Geraden schneiden sich nicht, aber ihre Tunnel sind nur stabil, wenn überall mindestens Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 15} cm Erde dazwischen sind. Eine Längeneinheit im Koordinatensystem entspricht Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} cm. Wird das Tunnelsystem halten?


Wenn die kleinste Entfernung, also der Abstand zwischen den Geraden groß genug ist, ist auch an allen anderen Stellen genug Erde zwischen den Tunneln. Überlege dir, welchen Abstand die Geraden voneinander haben müssten, damit die Tunnel nicht einstürzen. Berechne dann den Abstand zwischen den Geraden mit einem Verfahren deiner Wahl.

Da die Tunnel einen Radius von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2,5} cm haben und die Geraden in dem Modell in der Mitte der jeweiligen Tunnel liegen, müssen die Geraden mindestens einen Abstand von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2,5+15+2,5=20} haben, damit die Tunnel nicht einstürzen.

Wir bestimmen den Abstand zwischen den Geraden mithilfe einer Hilfsebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} , die parallel zur Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} ist und in der die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} liegt. Für den Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} muss gelten: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}\ast \vec{n}=0} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}\ast \vec{n}=0} . Es folgt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle n_1=\frac{2}{3} n_3} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle n_2=\frac{3}{4} n_3} . Also ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}=\begin{pmatrix} \frac{2}{3} \\ \frac{3}{4} \\ 1 \end{pmatrix}} ein Normalenvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} . Die Normalenform von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} lautet nun Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E:[\vec{x}-\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}]\cdot \begin{pmatrix} \frac{2}{3} \\ \frac{3}{4} \\ 1 \end{pmatrix} =0} . Nehme den Punkt auf der Geraden . Da der Abstand zwischen den Geraden gleich dem Abstand zwischen der Ebene und einem beliebigen Punkt auf der zu parallelen Geraden ist, erhält man nun mit der Formel für den Abstand eines Punktes von einer Ebene

Die Geraden haben also einen kleineren Abstand als LE. Das heißt, die Tunnel sind nicht überall mindestens cm voneinander entfernt und sie werden einstürzen.

Die einzige Lösung für die Maulwürfe ist es, an der kritischen Stelle eine gemeinsame Höhle zu bauen. :)


Die Geraden haben einen Abstand von . Zwischen den Tunneln sind also an einer Stelle nur Erde und sie werden einstürzen.

Dann bauen die beiden Maulwürfe an der kritischen Stelle einfach eine gemeinsame Höhle. :)


Aufgabe 14: Geradenpaare, Abstände und Lotfußpunkte zuordnen

Bei dieser Aufgabe gibt es drei Geradenpaare und , die jeweils windschief zueinander liegen. Schiebe zuerst die Geradenpaare auf das Feld mit der entsprechenden Nummer. Ordne ihnen dann die jeweiligen Lotfußpunkte und sowie den entsprechenden Abstand zwischen den Geraden zu. Ein paar Zettel bleiben übrig, diese schiebst du auf das letzte Feld. Du kannst die Zettel vergrößern, indem du sie anklickst.

Tipp: Durch genaue Überlegungen, Rückwärtsrechnen und mithilfe von Skizzen kann man manchmal schnell erkennen, was zusammengehört, ohne alle Schritte des Verfahrens durchzugehen!

Wenn du auf den Haken klickst, kannst du überprüfen, ob du richtig zugeordnet hast.


Du kannst natürlich auch mit dem Verfahren die beiden Lotfußpunkte bestimmen. Hier kannst du dir aber "rückwärts" schneller überlegen, was die Lotfußpunkte sind: Durch Einsetzen erkennt man, dass und auf der jeweiligen Gerade liegen. Der Verbindungsvektor ist wegen und orthogonal zu und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} . Also sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G(0|2|0)} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H(-1|0|-2)} die Lotfußpunkte und es ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle d(g;h)=|\vec{GH}|=\sqrt{(-1)^2+(-2)^2+(-2)^2}=3} .

Da Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} entlang der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} -Achse verläuft, liegt diese Gerade auch in der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} -Ebene.

Der Vektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}} ist ein möglicher Stützvektor für eine Geradengleichung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} , denn Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} veräuft durch den Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (0|2|1)} . Da die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} parallel zur Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} -Achse ist und der Eintrag des Stützvektors Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}} in der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Koordinate Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} ist, ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} parallel zur Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} -Ebene und alle Punkte auf der Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} haben die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Koordinate Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1} .

Also kann man den Abstand der Geraden direkt an der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Koordinate des Stützvektors der Geraden Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} ablesen: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle d(g;h)=|1|=1} .

Außerdem liegt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G(0|0|0)} auf Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H(0|0|1)} auf Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} und der Verbindungsvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{GH}=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}} ist orthogonal zu den Richtungsvektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}} beider Geraden. Also sind diese beiden Punkte die Lotfußpunkte. Das gemeinsame Lot liegt insbesondere auf der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Achse. Dies kann man daran erkennen, dass Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} entlang der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} -Achse verläuft und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} parallel zur Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} -Achse und nicht in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} -Richtung verschoben ist (der Stützvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} hat die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} -Koordinate Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} ). Beide Geraden schneiden also die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Achse und sind parallel zur Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} -Ebene bzw. liegen in dieser Ebene.
Da der Richtungsvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} im Eintrag der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} -Koordinate Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} ist, ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} parallel zur Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} -Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Ebene. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} liegt in der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} -Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Ebene. (Da die Richtungsvektoren von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} linear unabhängig sind, sind die Geraden nicht parallel zueinander, was aber ja auch schon in der Aufgabenstellung gesagt wurde.) Also kann man den Abstand der Geraden direkt am Unterschied der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} -Koordinaten der Stützvektoren der beiden Geraden ablesen: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle d(g;h)=|2-0|=2} . Da man aber nicht genau weiß, wo liegt (man kennt nur den Richtungsvektor), kann man auch nicht sagen, wo genau die Lotfußpunkte liegen.