Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden konstruieren
In diesem Lernpfadkapitel lernst du
- wie du Netze von Pyramiden zeichnen kannst.
- wie du aus einem Netz einen Körper falten kannst.
- wie du Schrägbilder von Pyramiden zeichnen kannst.
Am Ende folgt eine Sicherung der in diesem Kapitel behandelten Themen. Wir wünschen dir viel Erfolg beim Bearbeiten der Aufgaben!
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Inhaltsverzeichnis
Rückblick und Motivation
Pyramiden begegnen uns nicht nur im Mathematikunterricht, sondern auch in der realen Welt, wie z.B. in Architektur (Bild rechts) und Bauingenieurwesen (Konstruktion und Betrieb von Bauwerken des Hoch-, Verkehrs-, Tief- und Wasserbaus). Du kannst bereits Pyramiden im Alltag erkennen und Beispiele dafür nennen.
Einführung
Ordne den unten dargestellten Netzen die Körper zu, die daraus hergestellt werden können.
Halte deine Ergebnisse auf dem Arbeitsblatt fest.
Netze entwerfen
Netz einer Pyramide mit quadratischer Grundfläche zeichnen
Zeichne auf einem separaten Blatt (nicht das Arbeitsblatt!) das Netz einer Pyramide mit quadratischer Grundfläche. Die Länge der Grundkante soll dabei cm betragen und die Länge der Seitenhöhe soll
cm sein.
Anleitung:
- Zeichne zuerst ein Quadrat mit Seitenlänge
cm.
- Zeichne nun in das Quadrat die beiden Diagonalen ein; deren Schnittpunkt kennzeichnest du mit einem M.
- Tu folgendes für alle vier Seiten des Quadrats: Lege das Geo-Dreieck so, dass eine Gerade entsteht, die durch M und senkrecht durch die jeweilige Seite verläuft. Somit erhältst du die vier Punkte, die mittig auf den Seiten liegen. Zeichne diese Punkte ein und nenne sie A, B, C bzw. D.
- Zeichne jetzt, von den vier mittig auf den Seiten liegenden Punkten A bis D ausgehend, jeweils eine
cm-lange Strecke ein; diese beginnt jeweils in den Punkten A (bzw. B, C, D), steht senkrecht auf der jeweiligen Seite des Quadrats und führt vom Quadrat weg.
- Verbinde nun die "Enden" der soeben erstellten Strecken mit den beiden nächstliegenden Ecken des Quadrats, sodass vier Dreiecke entstehen, die das Quadrat umschließen.
Der regelmäßige Tetraeder
Nicht alle Pyramiden haben eine quadratische Grundfläche. Ein Rechteck, ein Dreieck, ein Sechseck oder andere Vielecke als Grundfläche sind ebenfalls möglich. Ein besonderer Fall ist die Pyramide, die aus vier gleichseitigen Dreiecken besteht (womit die Grundfläche auch dreieckig ist). Dieser Körper heißt regelmäßiger Tetraeder.
Ein regelmäßiger Tetraeder ist eine Pyramide, die aus vier gleichseitigen Dreiecken besteht (gleichseitige Dreiecke sind auch gleichwinklig; alle drei Innenwinkel betragen jeweils Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 60^{\circ}} ).
Zeichne nun das Netz eines regelmäßigen Tetraeders.
Körper herstellen
Vom Netz zum Körper
Eben hast du (mindestens) ein Körpernetz gezeichnet. Nun soll daraus ein dreidimensionaler Körper hergestellt werden. Nachfolgend ist die Herstellung einer Pyramide dargestellt.
a) Bewege den Schieberegler, um die Seitenflächen des Tetraeders aufzurichten oder abzusenken. Durch Verschieben der Eckpunkte kannst du die Gestalt der Pyramide verändern.

b) Stelle aus dem in Aufgabe 1 angefertigten Netz eine Pyramide mit quadratischer Grundfläche her. Fixiere die Mantelfläche mit Klebeband, um zu verhindern, dass sich die Pyramide wieder "öffnet".
Schrägbilder zeichnen
Schrägbild einer Pyramide mit quadratischer Grundfläche zeichnen
Bearbeite diese Aufgabe wieder auf dem Arbeitsblatt.
Zeichne das Schrägbild einer Pyramide mit quadratischer Grundfläche mit Grundflächenkantenlänge Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a = 5} cm und Körperhöhe Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b = 6} cm, indem du wie folgt vorgehst:
- Zeichne zuerst die Grundfläche. Stell dir vor, die Grundfläche würde "nach hinten weggehen". Diese perspektivische Darstellung gelingt dir, indem du die "nach hinten weggehenden" Kanten
- nur halb so lang wie eigentlich und
- unter einem Winkel von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 45^{\circ}} (Verzerrungswinkel) zeichnest (siehe Abbildung oben).
- Vervollständige das Schrägbild. Zeichne dazu die Diagonalen als Hilfslinien ein. Zeichne die Höhe der Pyramide ein. Verbinde die Spitze mit den Eckpunkten der Grundfläche.
Die in die Tiefe, also nach hinten gehenden Seiten werden unter einem Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 45^{\circ}} Winkel gezeichnet; nicht sichtbare Kanten werden gestrichelt dargestellt. Zeichne auf der Fläche, der der Grundfläche gegenüberliegt, die beiden Diagonalen ein. Bezeichne deren Schnittpunkt mit S. Verbinde S mit den unteren vier Ecken des Quaders.

Schrägbild eines Tetraeders
Zeichne das Schrägbild eines Tetraeders. Die Kanten der Grundfläche sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4} cm lang und die Höhe der Pyramide soll Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 6} cm betragen. Beachte beim Zeichnen die Merkmale dieser besonderen Pyramide.
Wenn du weitere Hilfestellung benötigst, schaue dir dieses Video bis zur Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4.} Minute an. [1]
Hinweis: Es gibt auch die Möglichkeit, die Grundfläche mit Hilfe von Winkelmessungen anstatt mit dem Zirkel zu zeichnen, da die Grundfläche gleichwinklig ist und somit alle Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 90^{\circ}} betragen.Sicherung
Lückentext
Vervollständige den folgenden Lückentext.
Folgende Begriffe kannst du einsetzen:
dreidimensional; halb so lang; beliebig viele Ecken; Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 90^{\circ}} ; unverzerrt; gleichseitig; Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 45^{\circ}} ; Tetraeder; Körper; Schrägbild; zweidimensional; Quader; Verzerrungswinkel; Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 60^{\circ}} ; doppelt so groß; verzerrt
Praktische Sicherung
a) Eine Scheune ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 40} m lang, Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 30} m breit. Die Seitenflächen des Dachs haben eine Höhe von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 10} m. Das Dach dieser Scheune hat die Form einer Pyramide. Zeichne das Netz des Daches im Maßstab Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1:100} .
b) Zeichne nun das Dach dieser Pyramide ebenfalls maßstabsgetreu.