Benutzer:Buss-Haskert/Trigonometrie/Sinusfunktion
5 Sinusfunktion und Kosinusfunktion
Die Zuordnung der Sinuswerte zu einem Winkel ist eindeutig, d.h. es handelt sich um eine Funktion, die Sinusfunktion.
Auf dieser Seite lernst du die verschiedenen Darstellungen (Text, Wertetabelle, Gleichung und Graph) zur Sinusfunktion kennen. Auch die Sinusfunktion enthält die Parameter a, b, c und d und du erforscht deren Bedeutung.
Erinnerst du dich an die Bedeutung der Parameter m und b bei den linearen Funktionen f(x) = mx + b bzw. an die Bedeutung von a, d und e bei den quadratischen Funktionen f(x) = a(x + d)² + e?
Ebenso erforscht du die Sinusfunktion.
5.1 Der Einheitskreis
Der Einheitskreis ist ein besonderer Kreis: Sein Mittelpunkt liegt im Ursprung M(0|0) und sein Radius beträgt r = 1 LE (Längeneinheit).
Auf den Kreisrand liegen also alle Punkte, die vom Ursprung den Abstand 1 haben.
Am Einheitskreis lassen sich die Streckenverhältnisse Sinus, Kosinus und Tangens gut verdeutlichen:
Originallink https://www.geogebra.org/m/p2hcjn3f

Applet von Buß-Haskert
5.2 Sinusfunktion und Kosinusfunktion

Applet von Reinhard Schmidt Originallink https://www.geogebra.org/m/tjt2hhs2
Stellst du dir den Punkt P des Einheitskreises als eine Gondel an einem Riesenrad vor und trägst die Höhe der Gondel zu einem bestimmten Zeitpunkt dar, ergibt sich der Graph der Sinusfunktion.

Applet nach Matthias Heinitz Originallink https://www.geogebra.org/m/drb6q4ry

Applet von Buß-Haskert (nach chje) Originallink: https://www.geogebra.org/m/stgatxum
5.3 Die allgemeinen Sinusfunktion: Bedeutung der Parameter für den Verlauf des Graphen
Dieses Kapitel orientiert sich am Lernpfad "Trigonometrische Funktionen" von Silvia Joachim, Karl Haberl und Franz Embacher. Er wurde erstellt unter der Lizenz CC BY SA (https://unterrichten.zum.de/wiki/Trigonometrische_Funktionen/Einfluss_der_Parameter). Herzlichen Dank!
Die Bedeutung des Parameters a in :
Untersuche hier den Einfluss von
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a }
auf die Graphen der Funktionen
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x \rightarrow a\cdot \sin x }
und
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x \rightarrow a\cdot \cos x } .
Untersuche hier den Einfluss von
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b}
auf die Graphen der Funktionen
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x \rightarrow \sin ( b\cdot x ) }
und
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x \rightarrow \cos ( b\cdot x ) } .
Untersuche hier den Einfluss von
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c}
auf die Graphen der Funktionen
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x \rightarrow \sin ( x + c ) }
und
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x \rightarrow \cos ( x + c ) } .
Untersuche hier den Einfluss von
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle d}
auf die Graphen der Funktionen
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x \rightarrow \sin x + d }
und
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x \rightarrow \cos x + d } .
Jetzt noch was zum Knobeln!!!
Ja genau, die Graphen der beiden angegebenen Funktionen sind identisch. Genauer gesagt:
Du hast eine Menge über den Einfluss der einzelnen Parameter auf das Aussehen der Graphen herausgefunden. Natürlich können aber die Parameter nicht nur einzeln variiert werden, sondern auch mehrere oder alle gleichzeitig.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -\cos \frac{x}{2}} | Datei:Test sin 1.jpg |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -0,5 \cdot \sin (2x)} | Datei:Test sin 2.jpg |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2 \cdot\sin x} | Datei:Test sin 3.jpg |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sin x} | Datei:Test sin 4.jpg |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos x} | Datei:Test sin 5.jpg |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(x+\frac{\pi}{4})} | Datei:Test sin 6.jpg |