Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der Randfunktion zur Integralfunktion

Aus ZUM Projektwiki


Allgemeine Info

Zuerst erklären wir Dir wichtige Begriffe und Zusammenhänge. Danach kannst Du selbständig die Aufgaben bearbeiten. Du benötigst Papier und Stifte, Lineal und Taschenrechner. Zu jedem Kapitel wurden Aufgaben beigefügt, die Dir dabei helfen das Wissen besser zu verstehen und zu vertiefen.

Zuerst erklären wir dir zu jeder Eigenschaft die wichtigen Begriffe und Zusammenhänge. Danach kannst du selbständig die Aufgaben bearbeiten. Dazu benötigst Papier und Stifte, Lineal und Taschenrechner.

Bei diesen Aufgaben handelt es sich um 3 verschiedene Schwierigkeitsstufen, die farblich gekennzeichnet sind:

  • In Aufgaben, die orange gefärbt sind, kannst du Gelerntes wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grüner Hinterlegung sind Knobelaufgaben.

Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.

Viel Erfolg bei der Bearbeitung dieses Lernpfades!

Einführung: Integral

Was ist ein Integral?

Die Integralrechnung ist eine Art Flächenberechnung. Die Fläche unter einem Graphen kann durch den gemeinsamen Grenzwert von Ober- und Untersummen bestimmt werden. D.h. man versucht, eine kurvige Fläche mit Flächen auszufüllen, die man leicht berechnen kann. Das sind vor allem Rechteck- und Dreieickflächen. Dann summiert man diese Teilflächen und erhält die Gesamtfläche. Dies nennt man das Integral von über das Intervall und schreibt dafür .

Die Funktion heißt dann über integrierbar. Dabei ist die untere und die obere Integrationsgrenze und die Rand- oder auch Integrandfunktion.

Betrachtet man die Werte von Integralen in Abhängigkeit von einer festen unteren Grenze und einer variablen (anstelle einer festen) oberen Grenze und verwendet deshalb als Variable der Integrandfunktion , so erhält man eine Integralfunktion

ist also eine Funktion, die jedem das Integral von über zuordnet. ist dabei die Funktionsvariable, in die eingesetzt werden darf, während eine gebundene Variable ist, in die nicht eingesetzt werden darf.

Eine Funktion zu integrieren (d.h. die Fläche unter der Funktionskurve zu berechnen) heißt, sich diese Funktion als 1. Ableitung zu denken. Nun sucht man eine dazu gehörige Funktion, die - wenn man sie ableitet - ebenjene 1.Ableitung (also die Ausgangsfunktion) ergeben würde. Diese andere Funktion heißt Stammfunktion. Eine Funktion heißt also Stammfunktion zur Funktion , wenn gilt für alle .

Rechnen mit Integralen

Aufgabe 1: Rechenregeln

Kreuze an, welche der folgenden Rechenregeln richtig und welche falsch sind.


1

Wahr
Falsch

2

Wahr
Falsch

3

Wahr
Falsch

1

Wahr
Falsch

2

Wahr
Falsch

3

Wahr
Falsch

1

Wahr
Falsch

2

Wahr
Falsch

3

Wahr
Falsch

1

Wahr
Falsch

2

Wahr
Falsch

3

Wahr
Falsch

1

Wahr
Falsch

2

Wahr
Falsch

3

Wahr
Falsch

1 , wenn für alle

Wahr
Falsch

2 , wenn für alle

Wahr
Falsch

3 , wenn für alle

Wahr
Falsch

1

Wahr
Falsch

2

Wahr
Falsch

3

Wahr
Falsch

1

Wahr
Falsch

2

Wahr
Falsch

3

Wahr
Falsch

Du brauchst Hilfe? Dann sieh dir die Funktionen in den folgenden Animationen an und überlege dir, wie die Flächen unter den Graphen addiert, subtrahiert, verschoben, usw. werden können.

GeoGebra


Der Hauptsatz der Differential- und Integralrechnung

Die Verbindung zwischen Integralen und Differentialen

Der Hauptsatz beschreibt, wie sich Ableitung und Integration umkehren lassen. Durch ihn kannst du beispielsweise Integrale leichter ausrechnen. Der Hauptsatz besteht aus zwei Teilen, die du nicht verwechseln solltest.

Der erste Teil des Hauptsatzes

Wenn eine Funktion auf dem Intervall ist, so gilt für jede Stammfunktion auf dem Intervall die Formel: , wobei ist. Mit dieser Variante lässt sich auch die Stammfunktion erstellen, wenn du deren Ableitung und einen Anfangswert kennst. Dies kannst du mit dieser Formel machen:

Du hast die Funktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://en.wikipedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle h(x)=x^{3}-6\cdot x+{\frac {47}{4}}\cdot x-5{\frac {1}{2}}} auf dem Intervall

1. Schritt: Ermittle das unbestimmte Integral, also die Stammfunktion :

2. Schritt: Berechne und durch Einsetzen der unteren bzw. oberen Intervallgrenzen in H(x): Fehler beim Parsen (Konvertierungsfehler. Der Server („https://en.wikipedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle H(1)={\frac {1}{4}}\cdot 1^{4}-2\cdot 1^{3}+{\frac {47}{8}}\cdot 1^{2}-{\frac {11}{2}}\cdot 1+C=-{\frac {11}{8}}+C} und

3. Schritt: Bilde die Differenz :

Der zweite Teil des Hauptsatzes

Die zweite Variante des Hauptsatzes ist die Umkehrung der ersten Variante. Nun gehen wir vom Integral, also der Stammfunktion , aus und bestimmen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)} . Hierbei gilt:

Mittelwerte mithilfe des Integrals bestimmen

Mittelwert

Mit einem Integral, zu einer Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle k} , kannst du den Mittelwert der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle k } bestimmen. Dazu brauchst du neben dem unbestimmten Integral auch das Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [a, b]} .

Hierzu benötigst du folgende Formel: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M= \frac{1}{b-a} \cdot \int_{a}^{b} k(x)\,dx } . Da solche Formeln sehr theoretisch sind, haben wir dir zur Formel des Mittelwertes eine Skizze gemacht.

Formel des Mittelwertes einer Funktion
















Ein Auto beschleunigt 40 Sekunden lang. Die Geschwindigkeit zum Zeitpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} ist gegeben durch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(t)= \frac{5}{4} \cdot t } , wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in Sekunden und die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(t)} in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m/s} angegeben wird. Wie groß ist die Durchschnittsgeschwindigkeit?

So könntest du die Beispielaufgabe berechnen:

  1. Schreibe dir die allgemeine Formel erstmal auf: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M= \frac{1}{b-a} \cdot \int_{a}^{b} k(x)\,dx }
  2. Setze alle Variablen, die du aus der Aufgabe hast ein: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M= \frac{1}{40-0} \cdot \int_{40}^{0} \frac{5}{4} \cdot t \,dt }
  3. Berechne den Mittelwert: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M= \frac{1}{40-0} \cdot \int_{40}^{0} \frac{5}{4} \cdot t \,dt= \frac{1}{30} \cdot [\frac{5}{8} \cdot t^2]_{40}^{0}=\frac{1}{40} \cdot \frac{1}{40} \cdot 40^2 = 25 }
  4. Formuliere den Antwortsatz: Die Durchschnittsgeschwindigkeit betrug beim Auto Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 25 m/s } .


Aufgabe 2: Der Goldpreis

Hierfür benötigst du einen Zettel und einen Stift.

Der Goldpreis wird innerhalb von 4 Tagen durch die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)= 2 \cdot x^3 - 12 \cdot x^2 + 20 \cdot x + 30 } dargestellt, Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } in Tagen,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)} in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{Euro}{g} } (Preis in Euro pro Gramm). Berechne den Durchschnittspreis in den ersten 4 Tagen.

Goldbarren
Welche Formel brauchst du?


Welche Informationen hast du vom Text bekommen?


Du brauchst um die Aufgabe zu berechnen zunächst einmal den Mittelwert. Aus der Aufgabe kannst du entnehmen, dass du in die Formel folgende Zahlen einsetzen musst: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a= 0} (Anfangswert), Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b= 4} .

So könntest du die Aufgabe berechnen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M = \frac{3}{4} \cdot \int_{0}^{4} 2 \cdot x^3 - 12 \cdot x^2 + 20 \cdot x + 30 \, dx = \frac{1}{4} \cdot (\frac{4^4}{2} - 4 \cdot 4^3 + 10 \cdot 4^2 + 30 \cdot 4) = 38 }

Antwortsatz: In den ersten vier Tagen beträgt der Durchschnittspreis Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 38} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{Euro}{g} } .


Aufgabe 3: Bakterien

Hierfür benötigst du einen Zettel und einen Stift.

In einem Labor werden Bakterien gezüchtet. Die Anzahl der Bakterien innerhalb von 10 Tagen ist durch die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle p(x) = - x^4 + 40 \cdot x^3 - 500 \cdot x^2 + 2000 \cdot x + 1 } gegeben , wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } für die Anzahl der Tage mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0 \leq\ x \leq 10 } steht.

Bakterien in einer Petrischale

a) Wie viele Bakterien gibt es am 8. Tag?

Überlege, was du für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} einsetzen musst.

Da x für die Anzahl der Tage steht und wir wissen wollen, wie viele Bakterien wir nach 8 Tagen haben, setzen wir Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x=8} .

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle p(8) = 358 }

Antwortsatz: Am achten Tag gibt es 358 Bakterien

b) Wie viele Bakterien gibt es in den ersten 8 Tagen im Durchschnitt?

Welche der Formeln, die du kennengelernt hast, brauchst du?

Da wir den Durchschnittswert der Funktion in den ersten 8 Tagen brauchen, nehmen wir die Formel zur Bestimmung des Mittelwertes:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M= \frac{1}{b-a} \cdot \int_{a}^{b} k(x)\,dx }

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M = \frac{1}{8 - 0} \cdot \int_{8}^{0} - x^4 + 40 \cdot x^3 - 500 \cdot x^2 + 2000 \cdot x + 1 \,dx = \frac{1}{8} \cdot ( - \frac{1}{5} \cdot 8^5 + 10 \cdot 8^4 - \frac{500}{3} \cdot 8^3 + 1000 \cdot 8^2 + 8 - 0) = 1635,13}

Antwortsatz: Im Durchschnitt gibt es ungefähr 1635 Bakterien.

c) Wie viele Bakterien werden durchschnittlich zwischen dem 2. und 4. Tag gezüchtet?

Überlege, wie sich c) und b) unterscheiden.

Der Unterschied zwischen c) und b) liegt darin, dass sich das Intervall verändert. Wir haben jetzt das Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [1, 3]} haben. Nun können wir die Formel, wie folgt, berechnen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M = \frac{1}{4 - 2} \int_{4}^{2} - x^4 + 40 \cdot x^3 - 500 \cdot x^2 + 2000 \cdot x + 1 \,dx = \frac{1}{2} \cdot ( - \frac{1}{5} \cdot 4^5 + 10 \cdot 4^4 - \frac{500}{3} \cdot 4^3 + 1000 \cdot 4^2 + 4 - ( - \frac{1}{5} \cdot 2^5 + 10 \cdot 2^4 - \frac{500}{3} \cdot 2^3 + 1000 \cdot 2^2 + 2 )) \approx 2435,13 }

Antwortsatz: Zwischen dem 2. und 4. Tag werden durchschnittlich ungefähr 2435 Bakterien gezüchtet.


Aufgabe 4: Integrieren mit dem Hauptsatz der Differential- und Integralrechnung

Hierfür benötigst du einen Zettel und einen Stift.

Die Abbildung zeigt das Schaubild der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x) = \frac{3}{4}x^3 - 2x^2 + 2x + 1 }

Schaubild der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)}

a) Welchen Wert erhältst du für das Integral im Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [-1, 3]} ?

Wie lautet die Stammfunktion?

Die Stammfunktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H(x)} können wir so berechnen: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H(x) = \int_ h(x) dx = \int \frac{3}{4}x^3 - 2x^2 + 2x + 1\,dx =\frac{3x^4}{16} - \frac{2x^3}{3} + x^2 + x + C } . Nun musst du nur noch die Intervallgrenzen hinzufügen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{-1}^{3} \frac{3}{4}x^3 - 2x^2 + 2x + 1 \,dx = 4\frac{1}{8} - \frac{19}{24} = \frac{25}{3} }

Antwortsatz: Der Wert des Integrals lautet Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{25}{3} } .


b) Wie lautet der Mittelwert?

Überlege, was du aus der vorherigen Aufgabe brauchen könntest.

Aus a) haben wir schon das bestimmte Integral ausgerechnet. Dies können wir für die Formel des Mittelwertes nutzen. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M =\frac{1}{3 + 1}\int_{-1}^{3} \frac{3}{4}x^3 - 2x^2 + 2x + 1 \,dx = \frac{1}{4} (\frac{147}{16}- \frac{41}{48}) = \frac{2}{3} } Antwortsatz: Der Mittelwert der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} lautet Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{2}{3} } . Damit du dir besser vorstellen kannst, was dieser Wert nun anzeigt, haben wir den Mittelwert in das Schaubild eingezeichnet.

Mittelwert der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)}


Aufgabe 5: Das Kirchenfenster

Hierfür benötigst du einen Zettel und einen Stift.

Kirchenfenster

Ein Kirchenfenster wird oben durch die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle k(x) = - x^2 + 10 \cdot x - 17 } im Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [3, 7]} begrenzt, Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle k(x)} in Metern. Wie viel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m^2 } Glas wurde benötigt?

Mache dir eine Skizze, ähnlich wie auf dem Foto. Wie stellt der Graph der Funktion das Kirchenfenster dar?

Der obere Rand des Kirchenfensters kannst du dir als den Graphen der Funktion vorstellen. Demnach ist das Integral der Funktion nichts anderes als die Glasfläche des Fensters. Mithilfe des Hauptsatzes der Integral- und Differenztialrechnung können wir die Aufgabe wie folgt berechnen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{7}^{3} - x^2 + 10 \cdot x - 17 \,dx = \left[ - \frac{7^3}{3} + 5 \cdot 7^2 - 17 \cdot 7 \right]- \left[ - \frac{3^3}{3} + 5 \cdot 3^2 - 17 \cdot 3 \right]= \frac{80}{3} }

Antwortsatz: Für das Kirchenfenster wurden ungefähr Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 26,67 m^2 } Glas benötigt.

Partielle Integration

Partielle Integration

Die partielle Integration ist eine Methode, die die Integration von Produkten zweier Funktionen ermöglicht. Sie beruht auf der Produktregel und wird daher auch Produktintegration genannt. Dabei ist es von Vorteil, wenn die eine Funktion leicht abzuleiten und die andere leicht zu integrieren ist.

Allgemein definiert man die Formel der partiellen Integration so:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int f'(x) \cdot g(x)\,dx = [f(x) \cdot g(x)] - \int f(x) \cdot g'(x)\,dx }

Dabei ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int f'(x) \cdot g(x)\,dx } das ursprüngliche Integral.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x)} ist die leicht zu integrierende Funktion.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) } ist die leicht abzuleitende Funktion.

Die Beispielfunktion lautet: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x) =cos(x) \cdot x}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle cos(x) } lässt sich leicht integrieren. Also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=cos(x) } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x)=sin(x) }

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x } lässt sich leicht ableiten. Also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)=x } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g'(x)=1 }

Nun müssen unsere Funktionen und deren Ableitungen in die oben genannte Formel eingesetzt werden: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int f'(x) \cdot g(x)\,dx = [f(x) \cdot g(x)] - \int f(x) \cdot g'(x)\,dx } Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int cos(x) \cdot x\,dx = [sin(x) \cdot x] - \int sin(x) \cdot 1\,dx = [sin(x) \cdot x] - [-(cos(x))] = sin(x) \cdot x + cos(x) }

Die integrierte Funktion bzw. Stammfunktion von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x) = cos(x) \cdot x} lautet somit:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H(x) = sin(x) \cdot x + cos(x)+C }

Integration durch Substitution

Integration durch Substitution

Die Integration durch Substitution ist eine weitere Methode der Integration, welche auf der Kettenregel beruht. Dabei muss eine Verknüpfung zweier Funktionen innerhalb dieses Integrals vorhanden sein. Allgemein wird ihre Formel folgendermaßen definiert:Fehler beim Parsen (Konvertierungsfehler. Der Server („https://en.wikipedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \int _{a}^{b}f(g(x))\cdot g'(x)\,dx=\int _{g(a)}^{g(b)}f(z)\,dz}

Vorgehen:


  1. Zunächst wird die innere Funktion dieser verknüpften Funktion durch eine Variable ersetzt. Also
  2. Die Gleichung wird nach abgeleitet. Also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z = g(x) \Longrightarrow dz = g'(x) dx }
  3. und dann nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle dx } umgeformt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle dz = g'(x) dx \Longrightarrow dx = \frac{dz}{g'(x)} }
  4. Falls im Integral die Grenzen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b } angegeben wurden, müssen diese durch Einsetzen in die Gleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) } angepasst werden. Dazu wird die untere Grenze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a } in die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) } . Dadurch wird Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(a) } die neue untere Grenze. Das gleiche Verfahren wird auch für die obere Grenze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b } verwendet, sodass Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(b) } die neue obere Grenze ist.
  5. Die nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle dx} umgeformte Gleichung und die neuen Grenzen werden nun in das Integral eingesetzt.
  6. Nun folgt das normale Integrationsverfahren. Also: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{g(a)}^{g(b)} f(z)\, dz = \left[F(z)\right]^{g(b)}_{g(a)} }
  7. Die Resubstitution ist nun der letzte Schritt, in dem das Ersetzen der inneren Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) } durch die Variable Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z} wieder rückgängig gemacht wird. Das heißt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left[F(z)\right]^{g(b)}_{g(a)} = \left[F(g(x))\right]^{b}_{a} }

Die zu integrierende Funktion lautet: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)=sin(2x) }

Zu bestimmen: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H(x) = \int_0^{\frac{1}{2} \pi} sin(2x)\, dx } . Dabei sind die Grenzen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a=0 } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b= \frac{1}{2} \pi }

  1. Die innere Funktion ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) = 2x = z } .
  2. Ableitung der Funktion: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g'(x)=2 \cdot dx=dz } .
  3. Umformen nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle dx } : Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2 \cdot dx= dz \Longrightarrow dx = \frac{dz}{2}} .
  4. Die allgemeine Integration lautet nun: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{2} \cdot \int_{g(a)}^{g(b)} sin(z)\, dz = \frac{1}{2} \left[-cos(z)\right]^{g(b)}_{g(a)} } .
  5. Anpassung der alten Grenzen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a \longrightarrow g(a)} bzw. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b \longrightarrow g(b) } . Das heißt für unsere untere Grenze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a=0 } gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(0)=2 \cdot 0 = 0 } und für die obere Grenze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b=\frac{1}{2} \pi } gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(\pi)= 2 \cdot \frac{1}{2} \pi = \pi } .
  6. Einsetzen in das Integral: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{g(a)}^{g(b)} sin(z)\, \frac{dz}{2} = \frac{1}{2} \int_{0}^{\pi} sin(z)\, dz } .
  7. Die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) } wird nun für die Variable Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z } ersetzt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{2} \cdot \int_{0}^{\pi} sin(z)\, dz = \frac{1}{2} \left[-cos(2x)\right]^{\pi}_{0}. }
  8. Für die speziellen Grenzen berechnen wir nun die Fläche: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{2} \left[-cos(z)\right]^{\pi}_{0} = \frac{1}{2} (-cos(\pi)-(-cos(0)) = \frac{1}{2} (1+1) = 1 }
Die integrierte Funktion bzw. Stammfunktion von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)= sin(2x) } lautet: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H(x) = - \frac{1}{2} cos(2x)+C }

Aufgaben zu den verschiedenen Integrationsverfahren

Aufgabe 6: Integration von komplexeren Funktionen

Wie lautet die Stammfunktion dieser Funktionen? Hierfür benötigt ihr einen Zettel und einen Stift, um die Funktion schriftlich zu integrieren.

a) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = x \cdot sin(x) }

Welche der drei eingeführten Integrationsverfahren passt den am besten zu einem Produkt von zwei Funktionen?
Wenn du die partielle Integration verwendest, setze die leicht abzuleitende Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)=x } und die leicht zu integrierende Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x)=sin(x)} .
Wie integriert man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x)=sin(x)} ? Welche besonderen Eigenschaften haben Sinus und Cosinus?

Um zuerst die Frage bezüglich des Integrierens von Sinus und Cosinus zu beantworten: Die Integration von Sinus und Cosinus bildet einen Kreis: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle sin(x) \rightarrow -cos(x) \rightarrow -sin(x) \rightarrow cos(x) \rightarrow sin(x) } . Die Stammfunktion von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x)=sin(x)} ist also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=-cos(x)}

Und der Lösungsweg für diese Aufgabe lautet:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x)= \int_a^b x \cdot sin(x) \,dx = \left[x \cdot (-cos(x)) \right] - \int_a^b 1 \cdot (-cos(x)) \, dx = x \cdot (-cos(x)) - (-sin(x)) = - x \cdot cos(x) + sin(x) + C }


b) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)= (x + 2)^2 } im Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [1, 6]}

Überlege, welche der Formeln, die du auf dieser Seite gelernt hast, brauchst du.
Bilde die Stammfunktion von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)} . Betrachte die Grenzen zunächst einzeln und denke an die binomischen Formeln.

Du brauchst die Formel vom Hauptsatz der Integral- und Differentialgleichung. Außerdem brauchst du die erste binomische Formel. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H(x)= \frac{x^3}{3} + 2 \cdot x^2 + 4 \cdot x } daraus folgt:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H(6) - H(1) = (\frac{6^3}{3} + 2 \cdot 6^2 + 4 \cdot 6) - (\frac{1^3}{3} + 2 \cdot 1^2 + 4 \cdot 1) = \frac{216}{3} - \frac{19}{3} = \frac{485}{3} }


c) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j(x)= \frac{cos(4x+1)}{2} }

An welche Integrationsmethode erinnert dich diese verketteten Funktionen?
Hast du die Integration durch Substitution erkannt? Dann setze die innerer Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)=4x+1 = z } und leite sie nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} ab.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle J(x)= \int \frac{cos(z)}{2}\, \frac{dz}{4} = \int \frac{cos(z)}{8}\, dz = \frac{1}{8} \int cos(z)\, dz } . Wenn du jetzt so weit gekommen bist, was fehlt dann nur noch?

Die integrierte Funktion lautet:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle J(x)= \frac{1}{8} \int cos(z)\, dz = \frac{1}{8} \left[ sin(z) \right] = \frac{sin(4x+1)}{8} + C } .


d) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle k(x)= cos(x) \cdot sin(x) }

Auf den ersten Blick wirkt zwar die Integralmethode "partielle Integration" passend, aber welche Methode würde vielleicht eher zum Ziel führen?
Was passiert, wenn du die abgeleitete, nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle dx } umgeformte Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)= sin(x) = z } in das Integral für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle dx } einsetzt?
Wenn du erkannt hast, dass du Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle sin(x) } kürzen kannst, erhälst du das Integral Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int z\, dz } . Den kannst du jetzt ganz leicht integrieren.

Die integrierte Funktion lautet:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle K(x) = \int z \, dz= \left[\frac{1}{2} \cdot z^2 \right]= \frac{(sin)^2(x)}{2} + C } .


e) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)= (4 - x) } im Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [1, 4]}

Überlege, welche der Formeln, die du auf dieser Seite gelernt hast, brauchst du.
Bilde die Stammfunktion von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)} und betrachte die Grenzen zunächst einzeln.

Du brauchst die Formel vom Hauptsatz der Integral- und Differentialgleichung. Bestimme zunächst die Stammfunktion: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(x)= 4 \cdot x - \frac{x^2}{2} } daraus folgt:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F(4) - F(1) = (4 \cdot 4 - \frac{4^2}{2} ) - (4 \cdot 1 - \frac{1^2}{2}) = 8 - \frac{7}{2} = \frac{9}{2} }


Aufgabe 7: Stammfunktionen zuordnen

Ordne die Funktionen ihren passenden Stammfunktionen zu!

Flächeninhalte von Integralen

Aufgabe 8: Flächeninhalte berechnen

Berechne den Flächeninhalt der folgenden Integrale! Dafür wirst du für ein paar Aufgaben einen Zettel und einen Stift benötigen.


Aufgabe 9: Zahnlogo
Skizze des Zahn-Logos
In einer Zahnarztpraxis soll ein neues Logo entworfen werden. Dazu wurde die nebenstehende Zeichnung angefertigt, welche durch die Funktionen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=- \frac{x^2}{2} + 2 } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)= x^4- \frac{15}{4} \cdot x^2 - 1 } das Zahnlogo bildet. Dabei entspricht eine Längeneinheit in dem Graphen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1 cm } . Nun soll dieses Logo mit einer Dicke von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1 mm} aus Silber (Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1 cm^3 } Silber wiegt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 10,5 g} ) produziert werden. Wie schwer wird das Logo dann werden?


Bearbeite diese Textaufgabe am besten schriftlich auf einem Zettel.


Zuerst soll die Fläche des Logos berechnet werden. Welche Grenzen gelten dabei für das Integral?
Zur Berechnung der Fläche wird dieses Integral genötigt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{-2}^2 f(x) + g(x)\, dx } .
Hast du daran gedacht, alle Einheiten einheitlich anzupassen? Die Dicke von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 1 mm } muss auf jeden Fall noch in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle cm } umgerechnet werden.
Wenn du die Fläche des Logos Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_{Logo} } wie in Tipp 1 berechnet hast, kannst du das Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{Logo}} nun durch das Produkt von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_{Logo} } und der Dicke (beachte Tipp 2!) berechnen.

Zunächst wird der Flächeninhalt berechnet:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A_{Logo} = \int_{-2}^2 f(x) + g(x)\, dx = \int_{-2}^2 (- \frac{x^2}{2} + 2) + (x^4- \frac{15}{4} \cdot x^2 - 1 )\, dx = \int_{-2}^2 x^4- \frac{15}{4} \cdot x^2 - \frac{1}{2} \cdot x + 1 \, dx = \left[ \frac{1}{5} x^5 - \frac{5}{4} x^3 - \frac{1}{4} x^2 + x \right] = 3,2 cm^2 }

Wenn ihr die Fläche des Logos berechnet habt, könnt ihr mit Hilfe der angegebenen Dicke des Logos das Volumen berechnen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{Logo}= A_{Logo} \cdot Dicke_{Logo} = 3,2 {cm}^2 \cdot 0,1 cm = 0,32 {cm}^3 }

Das Gewicht wird dann wie folgt angegeben:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{Logo} \cdot Dichte_{Silber}= 0,32 [{cm}^3] \cdot 10,5 [\frac{{cm}^3}{g}] = 3,36 [g] }

Das fertige Logo aus Silber wiegt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3,36 g } .

Rotationskörper (Zusatz: nur für LK's)

⭐ Rotationskörper und Raumintegrale

Lässt man den Graphen einer Funktion um die x-Achse rotieren, so entsteht ein sogenannter Rotationskörper. Für seinen Rauminhalt gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{rot} = \pi \int_{a}^{b} ( f(x) )^2 dx} .

Als Beispiel betrachten wird das Volumen einer Kugel mit Radius Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r} , die durch die Rotation des Graphen der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f} mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = \sqrt{r^2-x^2}} im Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [-r; r]} um die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} -Achse entsteht. Mit der Formel für den Rotationskörper erhält man nun das Volumen der Kugel: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V = \pi\int_{-r}^{r}(r^2-x^2) dx = \left[\pi(r^2\cdot x - \frac{1}{3}x^3)\right]_{-r}^{r} = \frac{4}{3}\pi\cdot r^3} .

Hier ein weiteres Beispiel einer Sinus-Funktion, das veranschaulicht, wie du dir Rotationskörper vorstellen kannst.

GeoGebra


⭐ Aufgabe 10: Rotationskörper und Raumintegrale
Funktionsgraph von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)}
Bearbeite diese Aufgabe am besten schriftlich auf einem Zettel.

Gegeben sei die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f } mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = \frac{7}{1+x}, x \in\mathbb{R}_+} . Die Fläche von rotiere um die -Achse.

Berechne den Inhalt des entstehenden Drehkörpers:

a) im Intervall

Nutze die Formel zur Inhaltsberechnung von Rotationskörpern und setze die Funktion sowie die Grenzen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a} ein.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{rot}= \pi \int_{a}^{b} ( f(x) )^2 dx = \pi \int_{0}^{a} ( \frac{7}{1+x} )^2 dx = \pi \int_{0}^{a} \frac{49}{(1+x)^2} dx = 49\pi \int_{0}^{a} (1+x)^{-2} dx = 49\pi \left[ -(1+x)^{-1} \right]_{0}^{a} = -\frac{49\pi}{1+a} + \frac{49\pi}{1} = 49\pi - \frac{49\pi}{1+a}}

b) im Intervall Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle [0; 6]}


Nutze die Formel zur Inhaltsberechnung von Rotationskörpern Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{rot} = \pi \int_{a}^{b} ( f(x) )^2 dx} und setze die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)} sowie die Grenzen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 6} ein.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{rot}= \pi \int_{a}^{b} ( f(x) )^2 dx = \pi \int_{0}^{a} ( \frac{7}{1+x} )^2 dx = \pi \int_{0}^{a} \frac{49}{(1+x)^2} dx = 49\pi \int_{0}^{a} (1+x)^{-2} dx = 49\pi \left[ -(1+x)^{-1} \right]_{0}^{a} = -\frac{49\pi}{1+a} + \frac{49\pi}{1} = 49\pi - \frac{49\pi}{1+a} = 49\pi - 7\pi = 42\pi} .


⭐ Aufgabe 11: Rotationskörper und Raumintegrale
Funktionsgraphen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)} (orange) und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)} (lila)
Sei eine Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} gegeben mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) = \frac{1}{6} x^2 + 1, x\in\mathbb{R}} sowie die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x) = -\frac{1}{3} x + 5, x\in\mathbb{R}} .

Die Graphen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h} begrenzen mit der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y} -Achse eine Fläche.

Berechne den Inhalt des Körpers, der entsteht, wenn diese Fläche um die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} -Achse rotiert.

Bearbeite diese Aufgabe am besten schriftlich auf einem Zettel.

Überlege dir, wie die Formel aussieht, die du zur Berechnung des Inhalts zwischen zwei Funktionen nutzen kannst. Überlege dir außerdem, in welchem Intervall das Integral berechnet werden soll.
Die Formel zur Inhaltsberechnung lautet: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{rot} = \pi \int_{0}^{b} ( h(x) )^2 dx - \pi \int_{0}^{b} ( g(x) )^2 dx } , wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b} die Schnittstelle von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)} ist. Berechne also zunächst die Schnittstelle.
Die Schnittstelle von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)} ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4} . Setze dies nun als obere Grenze in deine Formel (siehe Tipp 2) ein und berechne die Integrale. Nutze dafür die Substitution sowie dein Wissen über Potenzregeln und Linearität.

1. Schnittstelle berechnen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) = h(x) \Leftrightarrow \frac{1}{6} x^2 + 1 = -\frac{1}{3} x + 5 \Leftrightarrow \frac{1}{6} x^2 + \frac{1}{3} x - 4 = 0 \Leftrightarrow x^2 + 2x - 24 = 0 \Leftrightarrow x_{1,2} = -1 \pm \sqrt{1^2+24} = -1 \pm 5 \Rightarrow x_1 = 4, x_2 = -6 } Für uns interessant ist nur der Wert im positiven Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} -Bereich, da die Fläche links von der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y} -Achse laut Aufgabenstellung nicht betrachtet wird.

2. Integrale berechnen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{rot} = \pi \int_{0}^{b} ( h(x) )^2 dx - \pi \int_{0}^{b} ( g(x) )^2 dx = V_{rot} = \pi \int_{0}^{4} ( -\frac{1}{3} x + 5 )^2 dx - \pi \int_{0}^{4} ( \frac{1}{6} x^2 + 1 )^2 dx = \pi \int_{0}^{4} ( 5 -\frac{x}{3} )^2 dx - \pi \int_{0}^{4} ( \frac{x^4}{36} + \frac{x^2}{3} + 1 ) dx}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \rightarrow} Substituiere Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle u = 5 - \frac{x}{3} \Rightarrow \frac{du}{dx} = -\frac{1}{3} \rightarrow -3\pi\int u^2 du}

Nun wird die Potenzregel angewendet und resubstitutiert. Im zweiten Term kann zudem die Linearität des Integrals ausgenutzt werden. Insgesamt gilt dann:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle V_{rot} = \pi \left[ \frac{(x-15)^3}{27} \right]_{0}^{4} - \pi \left[ \frac{x^5+20x^3}{180}+x \right]_{0}^{4} \approx 185,05. }