Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Winkel und Skalarprodukt (Vektoren bzw. Geraden)
In diesem Lernpfadkapitel beschäftigst du dich mit dem Skalarprodukt und dem Winkel zwischen zwei Vektoren beziehungsweise dem Winkel zwischen zwei Geraden.
Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen:
- Mit Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit
- und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Inhaltsverzeichnis
Skalarprodukt
In diesem Anschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um später den Winkel zwischen zwei Vektoren berechnen zu können.
Einführung
Für das Skalarprodukt gilt das...
- Kommutativgesetz, das heißt es gilt
.
- Distributivgesetz, das heißt es gilt
.
- Assoziativgesetz, das heißt es gilt
mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r \in \mathbb{R} } .
Du hast immer noch keine genaue Vorstellung davon, wie du das Skalarprodukt zweier Vektoren berechnen kannst? Dann schaue dir das Video zum Thema Skalarprodukt an:
Übungen
Wenn du Terme zuerst umzuformst, bevor du das Skalarprodukt berechnest, sparst du dir eine Menge Aufwand.
Löse die Klammern auf und fasse sinnvoll zusammen. Notiere deine Ergebnisse und überprüfe sie anschließend mit den Lösungen. Für die Vektoren müssen in dieser Aufgabe keine Werte eingesetzt werden.
a) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (3 \vec{a} - 5 \vec{b}) \cdot (2 \vec{a} + 7 \vec{b}) }
b) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (3 \vec{e}) \cdot \vec{f} + \vec{f} \cdot (2 \vec{e}) - 4 (\vec{e} \cdot \vec{f}) }
c) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (3 \vec{u} - 2 \vec{v}) \cdot (\vec{u} + 2 \vec{v}) - 7(\vec{u} \cdot \vec{v}) }
d) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (2 \vec{a} + 3 \vec{b} - \vec{c}) \cdot ( \vec{a} - \vec{b}) }
e) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle ( \vec{x} + \vec{y})^2 - (\vec{x} - \vec{y})^2 }
Erste binomische Formel: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (x+y)^2 = x^2 + 2xy + y^2 }
Zweite binomische Formel: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (x-y)^2 = x^2 - 2xy + y^2 }
Dritte binomische Formel: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (x+y) \cdot (x-y) = x^2 - y^2 }f) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle ( \vec{g} + 3 \vec{h})^2 - \vec{g} \cdot (\vec{g} + 6 \vec{h}) }
Enscheide in den folgenden Aufgaben, wann der Malpunkt für das Skalarprodukt und wann er für die Multiplkation von Zahlen steht. Die Reihenfolge der Antworten innerhalb einer Antwortmöglichkeit soll der Reihenfolge der Malpunkte innerhalb der Aufgabe entsprechen.
Winkel
Im Folgenden schauen wir uns den Umgang mit Winkeln zwischen Vektoren und Geraden an.
Einführung
Die beiden Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} } haben den Innenwinkel α.
Es gilt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} \ast \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos \alpha }
Stellt man die Formel nach cos α um, erhält man:
Neben dem Sonderfall der Orthogonalität gibt es noch zwei weitere: Wenn α = 0°, dann haben die beiden Vektoren die gleiche Richtung.
Wenn α = 180°, dann haben die beiden Vektoren entgegengesetzte Richtungen.
Schau dir die folgende Darstellung zweier Vektoren an. Wie verändert sich das Skalarprodukt, wenn du die Länge eines Vektors veränderst? https://www.geogebra.org/m/nJzV8Euq#material/qcHvSSPD --> Wie kann das eingebunden werden???
Der Betrag eines Vektors ist im geometrische Sinne seine Länge. Die Formel zur Berechnung des Betrags lautet: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle | \vec{u} | = | \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} | = \sqrt{u_1 ^2 + u_2 ^2} }
Wenn du darüber noch mehr wissen möchtest, schaue dir Lernpfadkapitel Punkte und Vektoren im Raum an.Du hast immer noch keine genaue Vorstellung davon, wie du den Winkel zwischen zwei Vektoren berechnen kannst? Dann schaue dir das Video an:
Übungen
Winkel zwischen zwei Vektoren
Berechne die Größe des Winkels α zwischen den Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v} } . Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle.
Bestimme die fehlende Koordinate so, dass die Vektoren und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v} }
orthogonal zueinander sind.
Sei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} \perp \vec{v} } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v} \perp \vec{w} } . Was lässt sich im zweidimensionalen Raum Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \R^2 } über die Beziehung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{w} } sagen?
Im Vergleich dazu: Was lässt sich über die Beziehung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{w} } im dreidimensionalen Raum Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \R^3 } sagen?
Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeiger einer Uhr täglich null?
1) Mache dir zunächst einmal klar, was es für die Uhrzeiger bedeutet, wenn ihr Skalarprodukt null ist.
2) Wie häufig wird das Skalarprodukt innerhalb von einer Stunde null?Jede Stunde befinden sich die beiden Uhrzeiger zweimal orthogonal zueinander. Viermal am Tag, nämlich zu den Uhrzeiten 3, 9, 15 und 21Uhr, zählt der rechte Winkel zweimal.
Damit ergibt sich, dass das Skalarprodukt der beiden Uhrzeiger täglich 48 - 4 = 44 Mal null beträgt.
Winkel zwischen zwei Geraden
In diesem Abschnitt lernst du, wie man den Schnittwinkel zweier Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.
Wenn sich zwei Geraden schneiden, kann man einen Schnittwinkel berechnen.
Mach dich mit den Eigenschaften von Geraden vertraut. Es gibt vier mögliche Lagen zweier Geraden:
echt parallele Geraden, identische Geraden, windschiefe Geraden, sich schneidende Geraden
Schnittwinkel zweier Geraden - Formel
Gegeben sind zwei sich schneidende Geraden in Parameterform
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g: \vec{x} = \vec{a} + r \vec{u} }
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h: \vec{x} = \vec{b} + s \vec{v} }
Die Formel zur Berechnung des Schnittwinkels der beiden Geraden lautet
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} }
Vorgehensweise
- 1. Skalarprodukt der Richtungsvektoren berechnen
- 2. Länge der Richtungsvektoren berechnen
- 3. Ergebnisse in die Formel einsetzen
- 4. Formel nach alpha auflösen
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g: \vec{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} } ; Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h: \vec{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} }
- 1. Skalarprodukt der Richtungsvektoren berechnen
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} \ast \vec{v} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \ast \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} = 1 \cdot 1 + 3 \cdot (-1) + 0 \cdot 3 = -2 }
- 2. Länge der Richtungsvektoren berechnen
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle |\vec{u}| = \sqrt{1^2+3^2+0^2} = \sqrt{10} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle |\vec{v}| = \sqrt{1^2+(-1)^2+3^2} = \sqrt{11} }
- 3. Ergebnisse in die Formel einsetzen
Die in Schritt 1 und 2 berechneten Ergebnisse setzt du nun in die Formel ein
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} }
und erhältst somit
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle cos(\alpha) = \frac {|-2|}{\sqrt{10} \cdot \sqrt{11}} = \frac{2}{\sqrt{110}} }
- 4. Formel nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha } auflösen
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha = cos^{-1} (\frac{2}{\sqrt{110}}) \approx 79,01^\circ }
Der Schnittwinkel zwischen den beiden Geraden g und h beträgt ca. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 79,01^\circ }
Vorlage:Box1= Aufgabe 10: Lückentext
Aufgabe 10: Billiardaufgabe (Fokus Mathematik, S. 225, Nr. 28)
Aufgabe 11: S.130, Nr. 18