Digitale Werkzeuge in der Schule/Rund ums Dreieck/Winkel an Geraden

Aus ZUM Projektwiki



Info

In diesem Lernpfadkapitel lernst du zwei Sätze kennen, mit denen Winkel an Gerade bestimmt werden können.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
 


Winkel messen

Aufgabe 1: Winkel in der Parkettierung

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Parkettierung mit eingezeichneten Winkeln.

Betrachte die Abbildung. Tim möchte die Größen der Winkel , und untersuchen. Bestimme die Winkel, um Tim zu helfen. Die Abbildung findest du auch auf dem Arbeitsblatt.

= 120()°
= 60()°
= 60()°


Erinnere dich daran, dass Winkel mit dem griechischem Alphabet beschrieben werden. Typische Bezeichnungen für Winkel sind

  • (Alpha, griechisches a)
  • (Beta, griechisches b)
  • (Gamma, griechisches g)
Wenn du weitere Buchstaben aus dem griechischem Alphabet benötigst, schaue gerne unter diesem Wikipedia-Link nach: https://de.wikipedia.org/wiki/Griechisches_Alphabet


Erkundung

Nachdem du für Tim die Winkel gemessen hat, fällt ihm auf, dass der Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} gleich groß ist, wie der Winkel unter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} . Tim behauptet: "Die gegenüberliegenden Winkel an zwei Geraden, die sich schneiden, sind immer gleich groß".


Aufgabe 2: Gleiche Winkel

1. Hat Tim recht? Überprüfe Tims Aussage, indem du das folgende GeoGebra-Applet untersuchst. Du kannst dir dabei die Winkel anzeigen lassen und die Position der Geraden zueinander verändern. Verschiebe hierfür die Punkte A und B.

2. Beschreibe danach deine Beobachtungen die du gemacht hast, indem du den unten stehenden Lückentext ausfüllst.


GeoGebra

(Applet von I. Schwalbe)


Wenn ich die Lage der Geraden zueinander verändere, so verändern sich auch die Winkel am Schnittpunkt. Außerdem bleiben die Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} gleich groß, genau so wie die Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \delta} . Zwei nebeneinander liegende Winkel addieren sich immer zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 180^\circ} . Deshalb ergibt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha +\beta +\gamma +\delta=} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 360^\circ} .



Tim hat also recht. Die Winkel sind tatsächlich gleichgroß. Deshalb nennt man sie auch Scheitelwinkel.


Merksatz: Scheitelwinkel

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Fehler beim Erstellen des Vorschaubildes:
Scheitelwinkel

Übertrage diesen Merksatz auf das Arbeitsblatt und zeichne zwei Scheitelwinkel in die Abbildung ein.

Schneiden sich zwei Geraden in einem Schnittpunkt, so nennen wir die Winkel die sich gegenüberliegen, Scheitelwinkel. Diese Scheitelwinkel sind immer gleich groß.


Aufgabe 3: Wie kann das sein?

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Tom, Tims Freund, versteht nicht, warum das so ist. Hilf Tim, eine Begründung für Tom zu finden. Schaue dir hierfür das folgende Video an und halte deine Begründung auf dem Arbeitsblatt fest.



Winkel an mehreren Geraden

Tim und Tom haben nun beide verstanden, dass Scheitelwinkel gleich groß sind. Auf dem Bild am Anfang sind jedoch drei Geraden, von denen zwei parallel zueinander liegen. Sie fragen sich nun, ob es bei mehreren Geraden ebenfalls Winkel gibt, die gleich groß sind.

Aufgabe 4: Stufenwinkel erkunden

Also werden nun zwei parallele Geraden, die von einer dritten Gerade geschnitten werden, betrachtet. Schaue dir dieses weitere GeoGebra-Applet an und untersuche dieses, indem du die Position der Geraden zueinander veränderst. Vergleiche die Winkel miteinander und ergänze danach den unten stehenden Merksatz.


GeoGebra

(Applet von B. Lachner)


Merksatz: Stufenwinkel

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Stufenwinkel
Fülle den unten stehenden Lückentext aus und schreibe ihn danach auf das Arbeitsblatt ab. Zeichne zwei Stufenwinkel in die Abbildung ein.

Wenn zwei parallele() Geraden von einer dritten Gerade geschnitten werden, entstehen zwei() Schnittpunkte. Betrachtet man die Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} , so nennen wir diese Art von Winkeln Stufenwinkel(), welche gleich groß() sind.

Schaue dir das folgende Video nochmal an, um den Zusammenhang zwischen den Winkel noch besser zu verstehen.

Folgende Begriffe könnten dir vielleicht helfen

  • zwei
  • Stufenwinkel
  • parallele
  • gleich groß


Aufgabe 5: Zuordnung

Nachdem Tim und Tom jetzt wissen, was Neben-, Scheitel- und Stufenwinkel sind, hat Tom sich für Tim Geraden und Winkel ausgedacht und aufgezeichnet. Um das ganze jedoch noch schwieriger und unübersichtlicher zu gestalten, hat er mehr Linien und Winkel eingezeichnet, als nötig wären. Tim braucht wieder deine Hilfe. Ordne den Bilder die passende Unterschrift zu.


Wenn du dir nicht mehr sicher bist, scrolle auf der Seite weiter nach oben und schaue dir die jeweiligen Winkeltypen noch einmal an. Welche der Geraden sind wichtig zu beachten?

Welche der Geraden sind parallel?

Übungsaufgaben

Nachdem Tim und Tom sich jetzt mit Scheitel- und Stufenwinkeln auskennen, haben sie sich ein paar Übungsaufgaben für dich ausgedacht. Kannst du sie lösen?


Aufgabe 5: Scheitel- und Stufenwinkel erkennen

Die Abbildung zeigt drei Geraden, von denen zwei parallel sind. Überlege dir welche der Aussagen korrekt sind. Schreibe "richtig" oder "falsch" hinter die Aussagen.

Ü1.png

1. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{1}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{3}} sind Scheitelwinkel. richtig()
2. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{1}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{2}} sind Stufenwinkel. falsch()
3. Zu jedem der Winkel gibt es in der Abbildung einen Stufenwinkel und einen Scheitelwinkel. richtig()
4. Zu einigen der Winkel gibt es mehrere Stufenwinkel. falsch()
5. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{1}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta_{1}} sind Stufenwinkel. richtig()
6. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{2}} ist ein Stufenwinkel zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta_{2}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta_{2}} ist ein Scheitelwinkel zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta_{4}} . Also sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{2}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta_{4}} gleich groß. richtig()




Aufgabe 6: Bayrische Flagge

Das Bild zeigt einen Ausschnitt der bayrischen Flagge mit den eingezeichneten Winkeln Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} . Der Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} ist 51° groß. Wie groß ist der Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} ? Begründe die Antwort mit Hilfe deines Wissens über Stufenwinkel, indem du den Lückentext ausfüllst.

Ausschnitt der bayrischen Flagge

In die bayrische Flagge kann man zwei Geraden einzeichnen, sodass Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} der Schnittwinkel der beiden Geraden ist. Alle anderen Geraden, die das Rautenmuster bilden, sind jeweils zu einer der beiden Geraden parallel.

Wenn man nun vom Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} aus entlang einer der beiden Geraden geht, so kann man bei jeder Geradenkreuzung einen Stufenwinkel zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} einzeichnen. Man kann zum Beispiel entlang der steileren Gerade nach unten wandern und dann bei dem zweiten Schnittpunkt einen Stufenwinkel von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} einzeichnen, den wir Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{2}} nennen. Dieser befindet sich in der oberen Ecke einer weißen Raute.

Den Winkel unterhalb von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} , also in der oberen Ecke der blauen Raute nennen wir Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{3}} . Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{3}} ist dann wiederum ein Stufenwinkel zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{2}} . Da Stufenwinkel gleich groß sind, sind also die Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} ,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{2}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{3}} alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 60} ° groß. Die Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{3}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} sind Nebenwinkel und ergänzen sich zu 180°.

Also ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} dann 129()° groß.



In dieser Skizze sieht man die Geraden, durch die das Rautenmuster der bayrischen Flagge entsteht. Dabei sind Winkel eingezeichnet, mit denen man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} bestimmen kann. Hilfsskizze mit Winkeln.png



Aufgabe 7: Leiter an der Hauswand

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Eine Leiter steht an einer Hauswand, so dass sie mit dem Dach eine gerade Linie bildet. Es ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} =60° bekannt. Bestimme den Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} zwischen dem Schornstein und dem Dach. Du kannst, wenn du möchtest, als Hilfe Geraden und Winkel in die Abbildung auf der Arbeitsblatt einzeichnen.

Abbildung zur Aufgabe: Leiter an der Hauswand


Es hilft als erstes zu überlegen, wo es Geraden und Winkel geben könnte und diese einzuzeichnen. Gibt es irgendwo parallele Geraden? In welchem Winkel treffen die Hauswand und die Verlängerung des Schornsteins auf den Boden


Lösungsskizze zur Aufgabe: Leiter an der Hauswand

Man kann entlang der Hauswand und entlang des Schornsteins zwei parallele Geraden und eine weitere Gerade entlang des Daches des Hauses einzeichnen. Der Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha_{1}} in der Zeichnung ist ein Stufenwinkel zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} und ein Scheitelwinkel zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} .
Der Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} ist 60()° groß.