Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Quadratische Funktionen
Inhaltsverzeichnis
Scheitelpunktform
Wir schauen uns die Funktion an. Funktionen dieser Art heißen qua dra tisch e Funktionen. Der Graph einer solchen Funktion ist eine Pa ra bel. Der höchste bzw. der tiefste Punkt eines solchen Funktionsgraphen heißt Schei tel punkt.
Ist der Parameter a kleiner als Null (a<0), dann ist der Graph der Funktion g nach un ten geöffnet.
Ist a größer als Null (a>0), dann ist der Graph von g nach o ben geöffnet.
Ist a größer als Eins (a>1) oder kleiner als minus Eins (a<-1), dann wird der Graph von g schma ler. Man sagt, dass in diesem Fall der Graph ge streckt wird.
Ist d größer als Null (d>0), dann wird der Graph von g nach rechts verschoben.
Ist d kleiner als Null (d<0), dann wird der Graph von g nach links verschoben.
Ist e kleiner als Null (e<0), dann wird der Graph von g nach un ten verschoben.
Ist e größer als Null (e>0), dann wird der Graph von g nach o ben verschoben.
Gegeben sei die Funktion
a) Überprüfe rechnerisch, ob die Punkte A, B, C, D und E auf dem Graphen von f liegen.
b) Zeichne den Graphen der Funktion f und die Punkte A-E in dein Heft. Vergleiche anschließend die Ergebnisse aus a) mit deiner Zeichnung
Ordne die folgenden Funktionsgleichungen den zugehörigen Graphen zu.
Stelle die zugehörige Funktionsgleichung in der Scheitelpunktform auf. Wähle im Anschluss die richtige Antwortmöglichkeit aus.

Umwandlung Scheitelpunktform und Normalenform
Fülle den Lückentext aus, indem du auf eine Lücke klickst und die richtige Antwort auswählst.
Fülle den Lückentext aus, indem du auf eine Lücke klickst und die richtige Antwort auswählst.
Wandle in deinem Heft die Funktionen f, g und h in die allgemeine Form um und die Funktionen i, j und k in die Scheitelpunktsform. Ordne anschließend die gleichen Funktionen einander zu.
Wähle die Antwortmöglichkeit A,B,C oder D, welche die angefangene Gleichung zu einer korrekten quadratischen Gleichung ergänzt.
Nullstellen
Bestimme jeweils die Nullstellen:
also folgt
Dieses mal könne wir die pq-Formel nutzen, um die Nullstellen zu bestimmen.
Setze , d.h.
und teile dann beide Seiten durch
Durch Anwenden der pq-Formel erhalten wir
⇔ sowie
⇔ und
Anwendungsaufgabe
Baseball ist eine der beliebtesten Sportarten der Welt. Beim Wurf erreicht der Ball Geschwindigkeiten bis zu 160km/h. Wenn der Schlagmann den Ball richtig trifft, kann dieser über die Tribüne hinweg aus dem Stadion fliegen. Ein bestimmter Schlag kann durch die Funktion
beschrieben werden, wobei die horizontale Entfernung zum Schlagmann und
die Höhe des Balls, jeweils in Meter angibt.
a) Berechne j(0) und beschreibe, was dieser Wert im Anwendungskontext bedeutet.
b) Ein Spieler des gegnerischen Teams befindet sich 158 Meter vom Schlagmann entfernt in der Flugbahn des Balls. Wenn er hochspringt, erreichen seine Händen eine Höhe von 3,20 Metern. Berechne, ob der Spieler es schafft, den Balls aus der Luft zu fangen.
c) Berechne, wie weit der Baseball fliegt, wenn er von keinem gegnerischen Spieler aus der Luft gefangen wird.
d) Nach wieviel Metern erreicht der Baseball seine maximale Höhe? Welche Höhe erreicht er?
Zusatzaufgabe** Berechne die horizontale Entfernung zum Schlagmann, in der der Baseball eine Höhe von 30 Metern hat.
a) [Lösung anzeigen][Lösung ausblenden]
b)
[Lösung anzeigen][Lösung ausblenden]
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rll} j(158) &=& -0.0075 \cdot 158^2+ 1.2 \cdot 158 + 1 \\ &=& 3.37 \end{array} }
Auf Höhe des gegnerischen Spielers hat der Baseball noch eine Höhe von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3.37m.} Da der Spieler nur Bälle bis zu einer Höhe von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3.20m} erreichen kann, fängt er diesen Ball nicht.
c)
[Lösung anzeigen][Lösung ausblenden]
Nullstellenberechnung:
Im ersten Schritt wird der Vorfaktor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x^2}
eliminiert.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} 0 &=& -0.0075 \cdot x^2 + 1.2 \cdot x + 1 & \mid :(-0.0075) \\ &=& x^2 - 160x - \frac{400}{3} \end{array} }
Im zweiten Schritt wird die pq-Formel angewendet, um die Nullstellen zu berechnen.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow p=-160, q= -\frac{400}{3} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} x_{1/2} &=& -\frac{-160}{2} \pm \sqrt{{\left( \frac{-160}{2} \right)}^2 -(-\frac{400}{3}} \\ &=& 80 \pm \sqrt{\frac{19600}{3}} \\ &=& 80 \pm 80.83 \\ \end{array} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow x_1 = 80+80.83 = 160.83 }
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = 80-80.83 = -0.83 }
d)
[Lösung anzeigen][Lösung ausblenden]
Umwandlung der allgemeinen Form in die Scheitelpunktform:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} j(x) &=& -0.0075 \cdot x^2 + 1.2 \cdot x +1 &\mid -0.0075 \, ausklammern \\ &=& -0.0075 (x^2-160x-\frac{400}{3}) &\mid +80^2 -80^2 \, quadratische \, Erg\ddot{a}nzung\\ &=& -0.0075 (x^2-160x + 80^2-80^2-\frac{400}{3}) &\mid 2. \, binomische \, Formel\\ &=& -0.0075 [(x-80)^2 -\frac{19600}{3}] &\mid ausmultiplizieren \\ &=& -0.0075 (x-80)^2 +49 \end{array} }
Zusatzaufgabe:
[Lösung anzeigen][Lösung ausblenden]
Wir müssen für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j(x)=30}
die zugehörigen x-Werte berechnen. Dafür setzen wir Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 30}
für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j(x)}
ein und bringen als erstes alle Summanden auf eine Seite.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 30 = -0.0075 \cdot x^2 + 1.2 \cdot x + 1 \mid -30 }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow 0=-0.0075 \cdot x^2 + 1.2 \cdot x -29 }
Als nächstes eliminieren wir den Vorfaktor vor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x^2.}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rlll} 0 &=& -0.0075 \cdot x^2 + 1.2 \cdot x -29 &\mid :(-0.0075) \\ &=& x^2 -160 \cdot x + \frac{11600}{3} \end{array} }
Nun lösen wir die Gleichung mithilfe der pq-Formel nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x}
auf.
Es gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle p=-160, q= \frac{11600}{3}.}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rll} x_{1/2} &=& -\frac{-160}{2} \pm \sqrt{ \left( \frac{-160}{2} \right)^2 - \frac{11600}{3}} \\ &=& 80 \pm \sqrt{\frac{7600}{3}}\\ &=& 80 \pm 50.33 \end{array} }
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow x_1 = 80+50.33 = 130.33 }
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = 80-50.33 = 29.67 }