|
|
Zeile 109: |
Zeile 109: |
| :<math>\vee.\;\;\;\;\;\; 25x^{2} - 9a^{2} = 0\;\;\;\;\;\;\,\;|+9a</math> | | :<math>\vee.\;\;\;\;\;\; 25x^{2} - 9a^{2} = 0\;\;\;\;\;\;\,\;|+9a</math> |
| :<math>\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 25x^{2} = 9a^{2}\;\;\;\;|:25</math> | | :<math>\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 25x^{2} = 9a^{2}\;\;\;\;|:25</math> |
| :<math>\;\;\;\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x^{2} = \frac{9}{25}a^{2}|\sqrt{(...)}</math> | | :<math>\;\;\;\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x^{2} = \frac{9}{25}a^{2}\;|\sqrt{(...)}</math> |
| .<math> \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = -\frac{3}{5}a, x_{2} = 0</math> und <math> x_{4} = \frac{3}{5}a</math> | | .<math> \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = -\frac{3}{5}a, x_{2} = 0</math> und <math> x_{4} = \frac{3}{5}a</math> |
| ;Hinreichendes Kriterium: <math> h_{a}''(x_E) < 0</math> oder <math> h_{a}''(x_E) > 0</math>, mit <math> h_{a}''(x) = 100x - 18a^{2}x</math>. | | ;Hinreichendes Kriterium: <math> h_{a}''(x_E) < 0</math> oder <math> h_{a}''(x_E) > 0</math>, mit <math> h_{a}''(x) = 100x - 18a^{2}x</math>. |
| :Wir erhalten durch einsetzen: | | :Wir erhalten durch einsetzen: |
Version vom 10. April 2020, 20:35 Uhr
Extrema
Wissen
Im vorherigen Kapitel konntest du etwas über das Monotonie-Verhalten einer Funktion
erfahren. Dieses Wissen wird nun weiter vertieft und du lernst die sogenannten Extremstellen kennen, die im starken Verhältnis zu dem Monotonie-Verhalten stehen.
Eine Funktion
, die in einem ersten Abschnitt streng monoton wächst und im darauf folgenden Abschnitt streng monoton fällt, muss einen Punkt besitzen an dem die Funktion weder steigt noch fällt und dieser Punkt wird als Maximum beziehungsweise Minimum bezeichnet.
Die folgende Übersicht soll dir dabei helfen, die Kriterien der verschiedenen Extremstellen besser merken zu können.
Art der Extremstelle
|
Notwendiges Kriterium
|
Hinreichendes Kriterium
|
Hochpunkt
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x_E) = 0}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x_E) = 0}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E)}
< Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0}
|
Tiefpunkt
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x_E) = 0}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x) = 0}
und > Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0}
|
Sattelpunkt
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x_E) = 0}
|
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x) = 0}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E)}
= Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0}
|
Beispiel: Bestimmung von Extremstellen
Wir untersuchen die folgende Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = \frac{2}{3}x^{3} + 3x^{2} + 4x}
auf Extremstellen.
- Zunächst bilden wir die erste Ableitung und setzten diese gleich null:
. Umformungen dieser Gleichung liefert die möglichen Extremstellen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1 = -2}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = -1}
.
- Das bilden der zweiten Ableitung liefert: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x) = 4x + 6}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(-2) = -2 < 0 \Rightarrow}
Hochpunkt an der Stelle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1 = -2}
Tiefpunkt an der Stelle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = -1}
Aufgabe
Berechne die Extremstellen der folgenden Aufgabe. Jede Funktion besitzt einen unterschiedlich hohen Schwierigkeitsgrad. Wenn du dir noch nicht so sicher bist bei der Bestimmunng von Extremstellen, so solltest du die erste Aufgabe erarbeiten. Fühlst du dich jedoch gut vorbereitet und bist der Meinung du kannst auch komplexere Funktionen auf Extremstellen untersuchen. Dann versuche dein können an der Aufgabe 3.
- a) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = 2x^{2} - 6x + 4}
Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:
- Notwendiges Kriterium
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = 0}
, mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = 4x - 6}
.
- Durch Umformungen erhalten wir die möglichen Extremstellen:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4x-6=0\;\;\;\;\;\;\;\;|-6}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;4x=6\;\;\;\;\;|:4}

- Hinreichendes Kriterium
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E) < 0}
oder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E) > 0}
, mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x) = 4}
.
- Wir erhalten durch einsetzen: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''\Big(\frac{2}{3}\Big) = 4 > 0 \Rightarrow}
Es handelt sich um einen Tiefpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = \frac{2}{3}.}
- Ordinate bestimmen
- Wir setzen unsere Extremstelle in die Ursprungsfunktion ein: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\Big(\frac{2}{3}\Big) = \frac{8}{9} \Rightarrow}
TP

- b) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) = x^{3} - 3x^{2} - 5x + 6 }
Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:
- Notwendiges Kriterium
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = 0}
, mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = 3x^{2} - 6x - 5}
.
- Durch Umformungen erhalten wir die möglichen Extremstellen:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3x^{2}-6x-5=0\;\;\;\;\;\;\;\;|:3}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;x^{2}-2x-\frac{5}{3} = 0\;\;\;\;\;\;\;\,|}
PQ-Formel anwenden
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;x_{1/2} = -\frac{p}{2}\pm \sqrt{\Big(\frac{p}{2}\Big)^{2}-q}}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= -\frac{-2}{2}\pm \sqrt{\Big(\frac{-2}{2}\Big)^{2}-\Big(-\frac{5}{3}\Big)}}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= 1 \pm \frac{163}{100}}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_1 = -\frac{63}{100}}
und

- Hinreichendes Kriterium
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E) < 0}
oder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E) > 0}
, mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x) = 6x - 6}
.
- Wir erhalten durch einsetzen:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''\Big(-\frac{63}{100}\Big) = -\frac{489}{50} < 0 \Rightarrow}
Es handelt sich um einen Hochpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = -\frac{63}{100}.}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''\Big(\frac{263}{100}\Big) = -\frac{489}{50} > 0 \Rightarrow}
Es handelt sich um einen Tiefpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = \frac{263}{100}.}
- Ordinate bestimmen
- Wir setzen unsere Extremstelle in die Ursprungsfunktion ein:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\Big(-\frac{63}{100}\Big) = \frac{771}{100} \Rightarrow}
HP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(-\frac{63}{100}/\frac{771}{100}\Big)}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\Big(\frac{263}{100}\Big) = -\frac{971}{100} \Rightarrow}
TP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(\frac{263}{100}/\frac{971}{100}\Big)}
- c) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}(x) = 5x^{5} -3a^{2}x^{3} }
mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a \in [1,5]}
Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:
- Notwendiges Kriterium
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}'(x) = 0}
, mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}'(x) = 25x^{4} - 9a^{2}x^{2}}
.
- Durch Umformungen erhalten wir die möglichen Extremstellen:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;25x^{4}-9a^{2}x^{2}=0\;\;\;\;\;\;\;|}
Ausklammern
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;x^{2}\cdot(25x^{2}-9a^{2})=0\;\;\;\;\;\;\;|}
Satz vom Nullprodukt
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow x^{2} = 0 \Leftrightarrow x_{1/2} = 0}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vee.\;\;\;\;\;\; 25x^{2} - 9a^{2} = 0\;\;\;\;\;\;\,\;|+9a}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 25x^{2} = 9a^{2}\;\;\;\;|:25}
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x^{2} = \frac{9}{25}a^{2}\;|\sqrt{(...)}}
.Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = -\frac{3}{5}a, x_{2} = 0}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_{4} = \frac{3}{5}a}
- Hinreichendes Kriterium
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}''(x_E) < 0}
oder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}''(x_E) > 0}
, mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}''(x) = 100x - 18a^{2}x}
.
- Wir erhalten durch einsetzen:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;h_{a}''\Big(\frac{2}{3}a\Big) = 4 > 0 \Rightarrow}
Es handelt sich um einen Tiefpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = \frac{2}{3}.}
- Ordinate bestimmen
- Wir setzen unsere Extremstelle in die Ursprungsfunktion ein: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\Big(\frac{2}{3}\Big) = \frac{8}{9} \Rightarrow}
TP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(\frac{2}{3}/\frac{8}{9}\Big)}
Interaktive Applets