Benutzer:Niklas WWU-6

Aus ZUM Projektwiki


Extrema

Wissen

Im vorherigen Kapitel konntest du etwas über das Monotonie-Verhalten einer Funktion erfahren. Dieses Wissen wird nun weiter vertieft und du lernst die sogenannten Extremstellen kennen, die in einem starken Zusammenhang mit dem Monotonie-Verhalten stehen.

Eine Funktion , die in einem ersten Abschnitt streng monoton wächst und im darauf folgenden Abschnitt streng monoton fällt, muss einen Punkt besitzen an dem die Funktion weder steigt noch fällt und dieser Punkt wird als Maximum beziehungsweise Minimum bezeichnet.

Extrema werden bei einer Funktionsuntersuchung weitergehend darin unterschieden, ob es sich dabei um ein globales oder lokales Extremum handelt. Wichtig ist es dabei, dass du dein Intervall berücksichtigst.

  • Es liegt ein lokales Extremum vor, wenn kein größerer oder kleinerer Funktionswert in einem betrachteten Intervall vorhanden ist.
  • Ein globales Extremum liegt vor, wenn kein größerer oder kleinerer Funktionswert des gesamten Graphen existiert.

Merke: Die globalen Extremstellen sind besonders dann wichtig für dich, wenn du die Randwerte überprüfen sollst. Die nachfolgende Übung soll Dir dabei den Unterschied verdeutlichen!


Aufgabe 1 - Extrema zuordnen

Ordne die Fachbegriffe den passenden Punkten der Funktion zu.


Nach dem du jetzt weißt was Extrema sind, sollst du erfahren, wie du diese schrittweise bestimmen kannst.


Extremstellenbestimmung

Das Vorgehen setzt sich aus zwei Teilen zusammen, das für jede Funktion gilt:

Notwendiges Kriterium: Für ein mögliches Extremum muss die Steigung 0 betragen. Im Folgenden wird diese als bezeichnet. Es muss gelten: .
Hinreichendes Kriterium: Die potentiellen Extremstellen werden in eingesetzt. Du musst darauf achten, dass dabei zwei Möglichkeiten entstehen. Für kann folgen:
  • Es liegt ein Hochpunkt vor.
  • Es liegt ein Tiefpunkt vor.
Ordinate bestimmen: Zu jeder Koordinate exisitert eine passende Ordinate. Dazu musst du in einsetzen. Zusammenfassend erhälst du alle Extremstellen der Form .

Achtung: Im hinreichenden Kriterium besteht die Möglichkeit folgendes Ergebnis zu erhalten: . Dabei kann es sich um eine sogenannte Sattelstelle handeln. Diese Sattelstelle stellt einen besonderen Fall eines Extremums dar. Die zu erfüllenden Kriterien für eine Sattelstelle kannst du aus der unten abgebildeten Tabelle entnehmen.


Die folgende Übersicht soll dir dabei helfen, die Kriterien der verschiedenen Extremstellen besser merken zu können:

Art des Extrempunkts Notwendiges Kriterium Hinreichendes Kriterium
Hochpunkt und <
Tiefpunkt und >


Beispiel: Bestimmung von Extremstellen


Wir untersuchen die folgende Funktion auf Extremstellen.

  1. Zunächst bilden wir die erste Ableitung und setzen diese gleich null: . Umformungen dieser Gleichung liefern die möglichen Extremstellen und .
  2. Das bilden der zweiten Ableitung ergibt:
    • Hochpunkt an der Stelle .
    • Tiefpunkt an der Stelle .
  3. Es fehlen nun die Ordinaten, die wir durch das Einsetzen in bestimmen.
Wir erhalten: HP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(-2/\frac{28}{3}\Big)} und TP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(-1/-\frac{1}{3}\Big)} .


In den beiden nachfolgenden Aufgaben kannst du dein Wissen nun überprüfen. In der 1. Aufgabe werden deine mathematischen Fähigkeiten unter Probe gestellt, um anschließend in Aufgabe 2 herausfinden zu können, ob du deine Ergebnisse auch im Sachzusammenhang interpretieren kannst.



Aufgabe 2 - Extrema bestimmen

Berechne die Extremstellen der folgenden Aufgabe. Jede Funktion besitzt einen unterschiedlich hohen Schwierigkeitsgrad. Wenn du dir noch nicht so sicher bist bei der Bestimmunng von Extremstellen, so solltest du die erste Aufgabe erarbeiten. Fühlst du dich jedoch gut vorbereitet und bist der Meinung du kannst auch komplexere Funktionen auf Extremstellen untersuchen. Dann versuche dein Können an der dritten Aufgabe.

a) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = 2x^{2} - 6x + 4}

Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:

Notwendiges Kriterium
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = 0} , mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = 4x - 6} .
Durch Umformungen erhalten wir die möglichen Extremstellen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4x-6=0\;\;\;\;\;\;\;\;|-6}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;4x=6\;\;\;\;\;|:4}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;x=\frac{2}{3}}
Hinreichendes Kriterium
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E) < 0} oder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E) > 0} , mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x) = 4} .
Wir erhalten durch einsetzen: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''\Big(\frac{2}{3}\Big) = 4 > 0 \Rightarrow} Es handelt sich um einen Tiefpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = \frac{2}{3}.}
Ordinate bestimmen

Wir setzen unsere Extremstelle in die Ursprungsfunktion ein: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\Big(\frac{2}{3}\Big) = \frac{8}{9} \Rightarrow} TP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(\frac{2}{3}/\frac{8}{9}\Big)}
b) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x) = x^{3} - 3x^{2} - 5x + 6 }

Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:

Notwendiges Kriterium
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = 0} , mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = 3x^{2} - 6x - 5} .
Durch Umformungen erhalten wir die möglichen Extremstellen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3x^{2}-6x-5=0\;\;\;\;\;\;\;\;|:3}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;x^{2}-2x-\frac{5}{3} = 0\;\;\;\;\;\;\;\,|} PQ-Formel anwenden
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;x_{1/2} = -\frac{p}{2}\pm \sqrt{\Big(\frac{p}{2}\Big)^{2}-q}}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= -\frac{-2}{2}\pm \sqrt{\Big(\frac{-2}{2}\Big)^{2}-\Big(-\frac{5}{3}\Big)}}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= 1 \pm \frac{163}{100}}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_1 = -\frac{63}{100}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2 = \frac{263}{100}}
Hinreichendes Kriterium
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E) < 0} oder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_E) > 0} , mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x) = 6x - 6} .
Wir erhalten durch einsetzen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''\Big(-\frac{63}{100}\Big) = -\frac{489}{50} < 0 \Rightarrow} Es handelt sich um einen Hochpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = -\frac{63}{100}.}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''\Big(\frac{263}{100}\Big) = -\frac{489}{50} > 0 \Rightarrow} Es handelt sich um einen Tiefpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = \frac{263}{100}.}
Ordinate bestimmen

Wir setzen unsere Extremstelle in die Ursprungsfunktion ein:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\Big(-\frac{63}{100}\Big) = \frac{771}{100} \Rightarrow} HP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(-\frac{63}{100}/\frac{771}{100}\Big)}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\Big(\frac{263}{100}\Big) = -\frac{971}{100} \Rightarrow} TP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(\frac{263}{100}/\frac{971}{100}\Big)}
c) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}(x) = 5x^{5} -3a^{2}x^{3} } mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a \in [1,5]}
GeoGebra

Die Extrema werden durch das oben beschriebe Verfahren in drei Schritten bestimmt:

Notwendiges Kriterium
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}'(x) = 0} , mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}'(x) = 25x^{4} - 9a^{2}x^{2}} .
Durch Umformungen erhalten wir die möglichen Extremstellen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;25x^{4}-9a^{2}x^{2}=0\;\;\;\;\;\;\;|} Ausklammern
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;x^{2}\cdot(25x^{2}-9a^{2})=0\;\;\;\;\;\;\;|} Satz vom Nullprodukt
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow x^{2} = 0 \Leftrightarrow x_{1/2} = 0}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vee.\;\;\;\;\;\; 25x^{2} - 9a^{2} = 0\;\;\;\;\;\;\,\;|+9a}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 25x^{2} = 9a^{2}\;\;\;\;|:25}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x^{2} = \frac{9}{25}a^{2}\;|\sqrt{(...)}}

.Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = -\frac{3}{5}a, x_{2} = 0} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_{4} = \frac{3}{5}a}

Hinreichendes Kriterium
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}''(x_E) < 0} oder Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}''(x_E) > 0} , mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}''(x) = 100x^{3} - 18a^{2}x} .
Wir erhalten durch einsetzen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}''\Big(-\frac{3}{5}a\Big) = -540a^{3} + 10,8a < 0 \Rightarrow} Es handelt sich um einen Hochpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = -\frac{3}{5}a.}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}''(0) = 0 \Rightarrow} Es handelt sich um einen möglichen Sattelpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = 0.} Dies muss überprüft werden!
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}''\Big(\frac{3}{5}a\Big) = 540a^{3} - 10,8a > 0 \Rightarrow} Es handelt sich um einen Tiefpunkt bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = \frac{3}{5}.}
Achtung: Ob es sich um eine Sattelstelle bei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = 0} handelt, wird durch die dritte Ableitung überprüft, indem wir zeigen, dass Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}'''(0) \neq 0} stimmt. Es gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}'''(x) = 300x^{2} - 18a^{2}}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}'''(0) = -18a^{2} \neq 0 \Rightarrow} Es liegt ein Sattelpunkt vor.
Ordinate bestimmen

Wir setzen unsere Extremstelle in die Ursprungsfunktion ein:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}\Big(-\frac{3}{5}a\Big) = \frac{162}{625}a \Rightarrow} HP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(-\frac{3}{5}/\frac{162}{625}a\Big)}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}(0) = \frac{8}{9} \Rightarrow} SP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (0/0)}
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h_{a}\Big(\frac{3}{5}a\Big) = -\frac{162}{625} \Rightarrow} TP Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Big(\frac{3}{5}/-\frac{162}{625}a\Big)}


Aufgabe 3 - Anwendungsaufgabe

Die Anzahl der Kunden eines Shopping-Centers wird für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 9 \leq x \leq 20} mit Hilfe der Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = -\frac{1}{2}x^{3} + \frac{19}{2}x^{2} + 55x - 900 } modelliert. Die Variable Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} stellt dabei die Zeit in Stunden dar.

a) Bestimme die Uhrzeit, an der die Anzahl der Kunden am größten ist. Wie viele Besucher halten sich zu dieser Zeit im Shopping-Center auf?
Antwortsatz
Um 15:07 Uhr besuchen die meisten Kunden das Shopping Center. Insgesamt sind es 376 Personen.
Ableitungen bestimmen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x)=-\frac{3}{2}x^{2}+19x+55, f''(x)=-3x^{2}+19}
Notwendiges Kriterium:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = 0 \Leftrightarrow \Big(x_{1} = -\frac{243}{10}\Big) \vee. x_{2}=\frac{151}{10}} . Hier ist nur der zweite Wert von Relevanz, da der erste außerhalb des Definitionsbereiches liegt.
Hinreichendes Kriterium:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f''(x_{2}) = f''\Big(\frac{151}{10}\Big) = -\frac{263}{10} < 0 \Rightarrow} Es liegt ein Hochpunkt vor.
Ordinate bestimmen:
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\Big(\frac{151}{10}\Big) = 375,12. \;\;\;\;\;} Dieser Wert wird aufgerundet!
b) Berechne Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(12)} und beschreibe was dieser Wert im Sachzusammenhang bedeutet.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(12)=67.}

Die Ableitungsfunktion beschreibt die Anzahl der Kunden, die zu der Uhrzeit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} das Shopping-Center betreten oder verlassen. Der Wert 67 bedeutet im Sachzusammenhang, dass um 12 Uhr 67 neue Kunden das Shopping-Center betreten.
c) Um 10 Uhr betritt eine bestimmte Anzahl an Kunden das Shopping-Center. Berechne den Zeitpunkt an dem genauso viele Kunden das Center verlassen, wie sie es um 10 Uhr betreten haben.
Überlege Dir, wie die Zunahme und Abnahme von Kunden mathematisch betrachtet werden kann. Erinnere dich daran, dass man von einer positiven Zunahme spricht.

Bestimme die Anzahl neuer Kunden um 10 Uhr:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(10) = 95}

Hier muss ein Vorzeichenwechsel stattfinden, denn die Zunahme von Kunden bedeutet im mathematischen Sinne eine positive Zunahme. Da nach einer Uhrzeit gesucht, bei der Kunden das Shopping-Center verlassen, muss aus +95 -95 werden.

Bestimme die Uhrzeit zu der 95 Kunden das Shopping-Center verlassen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f'(x) = -95 \Leftrightarrow x_{1/2} = -\frac{38}{6} \pm \sqrt{\Big(-\frac{38}{6}\Big)^{2} + 100}\Leftrightarrow \Big(x_{1} = -\frac{55}{10}\Big) \vee. x_{2} = \Big(\frac{1817}{100}\Big)}
Antwortsatz: Um 18:10 verlassen 95 Kunden das Shopping-Center.