Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Verhalten im Unendlichen und nahe Null: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 30: | Zeile 30: | ||
2=Wähle die jeweils richtigen Antworten aus. Es können eine oder mehrere Antworten richtig sein. Achte darauf, ob das Verhalten im Unendlichen oder nahe Null gefragt ist. Es kann helfen, dir Notizen zu machen. | 2=Wähle die jeweils richtigen Antworten aus. Es können eine oder mehrere Antworten richtig sein. Achte darauf, ob das Verhalten im Unendlichen oder nahe Null gefragt ist. Es kann helfen, dir Notizen zu machen. | ||
Falls du einen Tipp benötigst, klicke links oben auf die Glühlampe. | Falls du einen Tipp benötigst, klicke links oben auf die Glühlampe. | ||
{{LearningApp|width=100%|height | {{LearningApp|width=100%|height=500px|app=10633191}} | ||
| 3=Arbeitsmethode| Farbe={{Farbe|orange}}}} | | 3=Arbeitsmethode| Farbe={{Farbe|orange}}}} | ||
Zeile 36: | Zeile 36: | ||
2=Wähle jeweils den richtigen Funktionsgraphen aus, der zum angegebenen Funktionsterm passt. | 2=Wähle jeweils den richtigen Funktionsgraphen aus, der zum angegebenen Funktionsterm passt. | ||
Falls du einen Tipp benötigst, klicke links oben auf die Glühlampe. | Falls du einen Tipp benötigst, klicke links oben auf die Glühlampe. | ||
{{LearningApp|width=100%|height | {{LearningApp|width=100%|height=500px|app=12085692}} | ||
| 3=Arbeitsmethode}} | | 3=Arbeitsmethode}} | ||
Aktuelle Version vom 12. Juni 2020, 23:09 Uhr
Das Verhalten einer Funktion im Unendlichen beschreibt, wie sich der Funktionswert
verhält, wenn
gegen plus oder minus unendlich geht, also wie f für sehr große positive und negative Werte von
aussieht. Bei ganzrationalen Funktionen der Form
kann man das Verhalten im Unendlichen untersuchen, indem man sich den Summanden des Funktionsterms mit dem größten Exponenten von
anschaut. Betrachte also
. Im Unendlichen verhalten sich
und
gleich, man kann also einfach das Verhalten im Unendlichen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g}
untersuchen. Es gibt vier Fälle, die dabei unterschieden werden:
Das Verhalten einer Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f}
nahe Null beschreibt, wie sich der Funktionswert Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)}
verhält, wenn Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x}
gegen Null geht, also für betragsmäßig kleine Werte von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x}
. Eine ganzrationale Funktion der Form Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=a_n x^n+a_{n-1}x^{n-1}+\ldots+a_1 x+a_0}
verhält sich nahe Null wie die Summe aus dem absoluten Glied und dem Summanden mit dem kleinsten Exponenten von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x}
, die im Funktionsterm auftaucht.
Wenn du dir unsicher bist, welche Summanden das genau sind, schau am besten einmal genau in das folgende Beispiel.
Betrachte die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=5x^2-3x+4} .
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f}
verhält sich im Unendlichen wie Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g(x)=5x^2}
, also geht Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)\rightarrow\infty}
für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x\rightarrow -\infty}
und , da Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle n=2}
eine gerade Zahl ist und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a_n=5>0}
.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f} verhält sich nahe Null wie Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h(x)=-3x+4} , also eine fallende Gerade mit Steigung -3 und y-Achsenabschnitt 4.
Falls du ein weiteres Beispiel sehen möchtest, klappe es auf:
Betrachte nun die Funktion Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f_2(x)=x^5+4x^2-7} .
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f_2}
verhält sich im Unendlichen wie , also geht Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f_2(x)\rightarrow -\infty}
für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x\rightarrow -\infty}
und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f_2(x)\rightarrow\infty}
für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x\rightarrow \infty}
, da Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle n=5}
eine ungerade Zahl ist und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a_n=1>0}
.
Wähle die jeweils richtigen Antworten aus. Es können eine oder mehrere Antworten richtig sein. Achte darauf, ob das Verhalten im Unendlichen oder nahe Null gefragt ist. Es kann helfen, dir Notizen zu machen. Falls du einen Tipp benötigst, klicke links oben auf die Glühlampe.
Wähle jeweils den richtigen Funktionsgraphen aus, der zum angegebenen Funktionsterm passt. Falls du einen Tipp benötigst, klicke links oben auf die Glühlampe.
Beschreibe in deinem Heft das Verhalten der nachfolgenden Funktionen und Funktionenscharen im Unendlichen und nahe Null. Gehe dazu vor wie in den Merkboxen oben.
a) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=7x^5-2x^2}
b) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=x^2-\frac{4}{3}x^2-3x+9}
c) ⭐ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f_t(x)=-7x^5+tx^3} mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t>0}
d) ⭐ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f_t(x)=-tx^3+2x^2-\frac{4}{7}} mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t<0}